Inhalt

Die Numerik entwickelt und analysiert Methoden zur konstruktiven, letztlich zahlenmäßigen Lösung mathematischer Probleme. Angesichts der wachsenden Rechenleistung moderner Computer wächst die praktische Bedeutung numerischer Methoden bei der Simulation praktisch relevanter Phänomene.

Aufbauend auf den Grundvorlesungen in Analysis und Linearer Algebra sowie auf CoMa I und II geht es in der Numerik I um folgende grundlegenden Fragestellungen: Bestapproximation, lineare Ausgleichsprobleme, weiterführende Verfahren für Interpolation und numerische Quadratur, Eigenwertprobleme, Anfangswertprobleme mit gewöhnlichen Differentialgleichungen

 

 


Literatur

* Stoer, Josef und Roland Bulirsch: Numerische Mathematik - eine Einführung, Band 1. Springer, Berlin, 2005, Aus dem FU-Netz auch online verfügbar. Link

* Hanke-Bourgeois, M. (2006) Grundlagen der numerischen Mathematik und des wissenschaftlichen Rechnens. Mathematische Leitfäden. [Mathematical Text-books], second edn. Wiesbaden: B. G. Teubner, p. 840.

* Schwarz, H.-R. & Köckler, N. (2011) Numerische Mathematik., 8th ed. edn. Studium. Wiesbaden: Vieweg+Teubner, p. 591.

There will be lecture notes (only in German).