Machine Learning for Molecular Physics WiSe 24/25

Instructors: 

Prof. Cecilia Clementi <cecilia.clementi@fu-berlin.de>

Dr. Lorenzo Giambagli <giambagli@fu-berlin.de>

Tutor:

Max Schebek <m.schebek@fu-berlin.de>

Lectures: Tuesdays 14:00-16:00 - 1.4.03 Seminarraum T2 (Arnimallee 14)

Tutorials: Tuesdays 16:00-18:00 - 1.4.03 Seminarraum T2 (Arnimallee 14) 

First day of lectures: October 15, 2023

Last day of lectures: February 11, 2024

First tutorial: October 22, 2023

Winter break: December 21, 2023 - January 5, 2024

 

Exams: February 25, 2025 h14:00 Conference Room Arnimallee 12 (Theoretical & Computational Biophysics - AI4Science Building). Group presentation on a topic agreed upon with the teachers, where each member should speak for approximately 15 minutes. Questions related to the project and all course topics may be asked.

 

CHAT ROOM

TBA

You need an account in Physics to be able to join the chat. Please ask ZEDV (zedv@physik.fu-berlin.de) to give you an account in Physics if you do not have one already.

Requirements:

  • Basic stat mech
  • Knowledge of computational methods for molecular simulations; MD, MC
  • Basic knowledge in solid state physics
  • Basic programming in python or related
Suggested Textbooks:

Deep Learning Foundations and Concepts (2024), Chris Bishop, Hugh Bishop online version here

Deep Learning (2016), Ian Goodfellow, Yoshua Bengio, Aaron Courville online version here

Lecture content:

  1. 15.10.: Organizational meeting
  2. 22.10.: Computer science I - Intro to machine learning
  3. 29.10.: Computer science II - Intro to machine learning
  4. 05.11.: Computer science III - Deep Learning Architectures I
  5. 12.11.: Computer science III - Deep Learning Architectures II
  6. 19.11.: Dimensionality reduction and reaction coordinates
  7. 26.11.: Featurization of molecular systems
  8. 03.12.: ML potentials I
  9. 10.12.: ML potentials II
  10. 17.12.: ML potentials III
  11. 07.01.: ML for coarse-grained potentials
  12. 14.01.: Diffusion Models
  13. 21.01.: Physical Interpretation of ML Models I
  14. 28.01.: Physical Interpretation of ML Models II
  15. 04.02.: Project Development
  16. 11.02.: Project Development