Seminar: Machine Learning for Process Control
Numerous real-world processes need to be kept under control in order to ensure safety or efficiency. Machine learning models are good candidates for this. They can for example detect shifts/anomalies/decalibrations/instabilities/etc. and possibly also predict which action needs to be taken on the process. The real-time nature of such tasks brings unique challenges from a ML perspective compared to classical application of ML. This seminar will explore relevant ML methods such as online/reinforcement learning and real-time data analysis. Use cases in manufacturing and intensive care will be covered. Students will select a few papers from a pool of thematically relevant research papers, which they will read and present over the course of the semester.
Kick-off meeting: 24 October 2024 in room KöLu24-26/SR 006
cf. here for the organization of the course.