Forschungsmodul: Diskrete Geometrie S22
to Whiteboard Site

Description

We will meet  Wednesdays, 4-6 pm in A6/SR009. The first meeting is on April 20th.

 

The topic of the seminar will be "polytopes." We will learn about special classes and properties of polytopes, and why they are interesting, combinatorially, geometrically, from the viewpoint of linear optimization, etc.

The seminar will be held in English.

Here is an explanation to the "Three Things" Exercise by Ravi Vakil: http://math.stanford.edu/~vakil/threethings.html

Tentative Schedule:

Date Topic Speaker
May 04 Flow Polytopes Jan
May 18

Transportation Polytopes

(and not weakly vertex-decomposable polytopes)

Joshua
June 08 0/1-Polytopes Deborah
June 22 fiber polytopes Farid
July 06 inscribable polytopes Jasper
July 13   Kyle

Literature

Here are some possible topics:

-- neighborly polytopes
Padrol, A. (2013). Many neighborly polytopes and oriented matroids. Discrete & Computational Geometry, 50(4), 865-902.
 
-- transportation polytopes, and not weakly vertex-decomposable polytopes
De Loera, J. A., & Klee, S. (2012). Transportation problems and simplicial polytopes that are not weakly vertex-decomposable. Mathematics of Operations Research, 37(4), 670-674.
 
-- associahedra and their diameter
Pournin, L. (2014). The diameter of associahedra. Advances in Mathematics, 259, 13-42.
Sleator, D. D., Tarjan, R. E., & Thurston, W. P. (1988). Rotation distance, triangulations, and hyperbolic geometry. Journal of the American Mathematical Society, 1(3), 647-681.
 
-- flow polytopes
Baldoni-Silva, W., De Loera, J.A., & Vergne, M. (2004). Counting integer flows in networks. Found. Comput. Math. 4, 277-314.
Mészáros, K., & Morales, A. H. (2019). Volumes and Ehrhart polynomials of flow polytopes. Mathematische Zeitschrift, 293(3), 1369-1401.
 
-- fatness of 4-polytopes
Eppstein, D., Kuperberg, G., & Ziegler, G. M. (2003). Fat 4-polytopes and fatter 3-spheres (pp. 282-310). CRC Press.
 
-- fiber polytopes
Billera, L. J., & Sturmfels, B. (1992). Fiber polytopes. Annals of Mathematics, 135(3), 527-549.
 
-- inscribable polytopes
Padrol, A., & Ziegler, G. M. (2016). Six topics on inscribable polytopes. In Advances in discrete differential geometry (pp. 407-419). Springer, Berlin, Heidelberg.
 
-- 0/1 polytopes
Ziegler, G. M. (2000). Lectures on 0/1-polytopes. In Polytopes—combinatorics and computation (pp. 1-41). Birkhäuser, Basel.
 
-- random polytopes
Bárány, I. (1992). Random polytopes in smooth convex bodies. Mathematika, 39(1), 81-92.
 
-- q-simplicial p-simple polytopes
Paffenholz, A., & Ziegler, G. M. (2004). The Et-construction for lattices, spheres and polytopes. Discrete & Computational Geometry, 32(4), 601-621. 
Basic Course Info

Course No Course Type Hours
19206111 Seminar 2

Time Span 20.04.2022 - 20.07.2022
Instructors
Florian Frick
Sophie Rehberg

Study Regulation

0089c_MA120 2014, MSc Informatik (Mono), 120 LPs
0280b_MA120 2011, MSc Mathematik (Mono), 120 LPs
0280c_MA120 2018, MSc Mathematik (Mono), 120 LP

Forschungsmodul: Diskrete Geometrie S22
to Whiteboard Site

Main Events

Day Time Location Details
Wednesday 16-18 A6/SR 009 Seminarraum 2022-04-20 - 2022-07-20

Forschungsmodul: Diskrete Geometrie S22
to Whiteboard Site

Most Recent Announcement

:  

Currently there are no public announcements for this course.


Older announcements

Forschungsmodul: Diskrete Geometrie S22
to Whiteboard Site

Currently there are no resources for this course available.
Or at least none which you're allowed to see with your current set of permissions.
Maybe you have to log in first.