Künstliche Intelligenz S21
to Whiteboard Site

Description

Welcome to the Artificial Intelligence lecture

The course will cover the basic ideas and techniques underlying the design of intelligent machines. By the end of this course, you will have learned how to build autonomous (software) agents that efficiently make decisions in fully informed, partially observable and adversarial settings as well as how to optimize actions in uncertain sequential decision making environments to maximize expected reward.

 

Syllabus:

  • Informed search
  • Uninformed search
  • Adversarial search
  • Constraint Satisfaction Problems
  • Local search and Optimization
  • Markov Decision Processes
  • Reinforcement Learning

 

Coursebooks

 

Requirements:

Basic knowledge of mathematics, algorithms & data structures and programming (Python).

 

Format

We will upload videos of lectures and tutorials (links will be announced each time via Whiteboard) and we will offer slots for online, live Q&A sessions (the slots will be within the planned lecture and tutorial slots, to be specified soon).

 

Schedule

Lectures: online live Q&As sessions: Wednesdays, 09:00-10:00

Click here

https://fu-berlin.webex.com/fu-berlin-en/j.php?MTID=mfec43e35232d893f59bdc090b005b1cb

Meeting number: 121 333 2905
Password: UbvFpGNJ733

Tutorials: online live Q&As sessions: Tuesdays, 16:15-17:15

Click here

https://fu-berlin.webex.com/fu-berlin/j.php?MTID=meb4f1abaa8da64b31b1af44da3e72e98

Meeting number: 121 807 6671
Password: 6Ct377mpEvQ
 

To pass the course

  • To pass the course, you need to pass i) the exam in the end & you need to pass ii) two projects (formal requirement "Aktive Teilnahme")

  • Project 1  will be announced on  17/5/2021 and is about implementing uninformed and informed search algorithms. The deadline will be on: 14.06.2021.

  • Project 2 will be announced on 21/6/2021 and is about implementing adversarial search algorithms. The deadline will be on: 19.07.2021.

  • For the projects, you can work in teams of 2 persons.

 

Basic Course Info

Course No Course Type Hours
19303701 Vorlesung 2
19303702 Übung 2

Time Span 14.04.2021 - 15.10.2021
Instructors
Philip Naumann
Eirini Ntoutsi
Arjun Roy

Study Regulation

0086c_k150 2014, BSc Informatik (Mono), 150 LPs
0086d_k135 2014, BSc Informatik (Mono), 135 LPs
0087d_k90 2015, BSc Informatik (Kombi), 90 LPs
0088d_m60 2015, MSc Informatik (Kombi), 60 LPs
0089b_MA120 2008, MSc Informatik (Mono), 120 LPs
0089c_MA120 2014, MSc Informatik (Mono), 120 LPs
0207b_m37 2015, MSc Informatik (Lehramt), 37 LPs
0208b_m42 2015, MSc Informatik (Lehramt), 42 LPs
0458a_m37 2015, MSc Informatik (Lehramt), 37 LPs
0471a_m42 2015, MSc Informatik (Lehramt), 42 LPs
0511a_m72 2016, MSc Informatik (Lehramt), 72 LPs
0511b_m72 2019, M-Ed Fach 2 Informatik (Lehramt an Gymnasien - Quereinstieg), 72 LP
0556a_m37 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs
0557a_m42 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs
0590a_MA120 2019, MSc Data Science, 120 LP
0590b_MA120 2021, MSc Data Science, 120 LP

Künstliche Intelligenz S21
to Whiteboard Site

Main Events

Day Time Location Details
Wednesday  8-10 Online 2021-04-14 - 2021-07-14

Accompanying Events

Day Time Location Details
Tuesday 16-18 Online Übung 01

Künstliche Intelligenz S21
to Whiteboard Site

Most Recent Announcement

:  

Currently there are no public announcements for this course.


Older announcements

Künstliche Intelligenz S21
to Whiteboard Site

Currently there are no resources for this course available.
Or at least none which you're allowed to see with your current set of permissions.
Maybe you have to log in first.