Seminar/Proseminar: Explainable AI for Data Science W23/24
to Whiteboard Site

Description

Seminar/Proseminar: Explainable AI for Data Science

Explainable AI is a recent and growing subfield of machine learning (ML) that aims to bring transparency into ML models without sacrificing their predictive accuracy. This seminar will explore current research on the use of Explainable AI for extracting insights from large datasets of interest. Use cases in biomedicine, chemistry, earth sciences, and digital humanities will be covered.

Students will select a few papers from a pool of thematically relevant research papers, which they will read and present over the course of the semester.

Kick-off meeting: Friday 27 October 2023 at 14:15 in room T9/049 Seminarraum (Takustr. 9)

Information about the course: here

Presenter-Paper matching

Minh Duc Do:
 - Thomas et al. Analyzing neuroimaging data through recurrent DL models, 2019

Siyu Deng:
 - Novakovsky et al. Obtaining genetics insights from DL via XAI, 2022

Hanee Rai:
- Zednik et al. Scientific exploration and XAI, 2022

 Aditya Panchal:
 - Schütt et al. Quantum-chemical insights from interpretable atomistic NNs, 2019

 Se Yeon Kim:
 - El-Hajj et al. Explainability and transparency in the realm of digital humanities, 2023

Max Ehrlicher-Schmidt:
 - Schramowski et al. Making DNNs right for the right scientific reasons, 2020

Saniya Nankani:
 - Krenn et al. On scientific understanding with artificial intelligence, 2022

Shipra Guin:
 - Preuer et al. Interpretable deep learning in drug discovery, 2019

Cora Glaß:
 - Krenn et al. On scientific understanding with artificial intelligence, 2022

Bashar Suleiman:
 - Preuer et al. Interpretable deep learning in drug discovery, 2019

Georgi Lazarov:
 - El-Hajj et al. Explainability and transparency in the realm of digital humanities, 2023

Lukas Felmy:
 - Thomas et al. Analyzing Neuroimaging Data Through Recurrent DL Models, 2019

Nina Papenfuß:
 - Keyl et al. Patient-level proteomic network prediction by explainable AI, 2022

Anuraj Suman:
- Zednik et al. Scientific exploration and XAI, 2022

Basic Course Info

Course No Course Type Hours
19333417 Seminar/Proseminar 2

Time Span 20.10.2023 - 16.02.2024
Instructors
Grégoire Montavon

Study Regulation

0086c_k150 2014, BSc Informatik (Mono), 150 LPs
0086d_k135 2014, BSc Informatik (Mono), 135 LPs
0087d_k90 2015, BSc Informatik (Kombi), 90 LPs
0088d_m60 2015, MSc Informatik (Kombi), 60 LPs
0089c_MA120 2014, MSc Informatik (Mono), 120 LPs
0207b_m37 2015, MSc Informatik (Lehramt), 37 LPs
0208b_m42 2015, MSc Informatik (Lehramt), 42 LPs
0458a_m37 2015, MSc Informatik (Lehramt), 37 LPs
0471a_m42 2015, MSc Informatik (Lehramt), 42 LPs
0556a_m37 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs
0556b_m37 2023, M-Ed Informatik Fach 1 (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LP
0557a_m42 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs
0557b_m42 2023, M-Ed Informatik Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs
0590b_MA120 2021, MSc Data Science, 120 LP

Seminar/Proseminar: Explainable AI for Data Science W23/24
to Whiteboard Site

Main Events

Day Time Location Details
Friday 14-16 T9/049 Seminarraum 2023-10-20 - 2024-02-16

Seminar/Proseminar: Explainable AI for Data Science W23/24
to Whiteboard Site

Most Recent Announcement

:  

Currently there are no public announcements for this course.


Older announcements

Seminar/Proseminar: Explainable AI for Data Science W23/24
to Whiteboard Site

Currently there are no resources for this course available.
Or at least none which you're allowed to see with your current set of permissions.
Maybe you have to log in first.