Finite geometry is the study of finite incidence structures (or hypergraphs) satisfying certain geometrically motivated axioms. In this course we will introduce various finite geometries and explore how these structures interact with combinatorics. In particular, we will study finite projective and affine spaces, generalized polygons and polar spaces. On the combinatorial side we will discuss blocking sets, strongly regular graphs, finite field Kakeya and Nikodym problems, and the cage problem.
Finite Geometry and Combinatorial Applications by Simeon Ball
An Introduction to Incidence Geometry by Bart De Bruyn
Combinatorics of finite geometries by Lynn Margaret Batten.
Incidence Geometry by G.~Eric Moorhouse
Projective Geometr' by Rey Casse
Algebraic Graph Theory by Chris Godsil and Gordon Royle
Course No | Course Type | Hours |
---|---|---|
19240501 | Vorlesung | 2 |
19240502 | Übung | 2 |
Time Span | 09.04.2019 - 09.07.2019 |
---|---|
Instructors |
Tibor Szabo
|
0089c_MA120 | 2014, MSc Informatik (Mono), 120 LPs |
0280b_MA120 | 2011, MSc Mathematik (Mono), 120 LPs |
0280c_MA120 | 2018, MSc Mathematik (Mono), 120 LP |
Day | Time | Location | Details |
---|---|---|---|
Tuesday | 16-18 | T9/SR 006 Seminarraum | 2019-04-09 - 2019-07-09 |
Day | Time | Location | Details |
---|---|---|---|
Tuesday | 14-16 | T9/SR 006 Seminarraum | Übung 01 |
Sunday | ? - ? | Pseudotutorium zur Kapazitätsplanung - potentielle Übungsteilnehmer melden sich bitte hier an! |