Machine Learning W25/26
to Whiteboard Site

Description

Machine Learning — Fundamentals & Advanced (5/10 ECTS)

Overview

This course provides a two-track path through modern ML.

  • Wednesdays 12-14 (Fundamentals, 5 ECTS): core concepts and classical methods—ideal if you need a concise, practice-oriented introduction.

  • Thursdays 14-16 (Advanced, +5 ECTS): deeper and newer topics that build directly on Wednesday’s lecture—recommended for data scientists and anyone taking 10 ECTS.

Format & Credits

  • 2 lectures/week: Wed = foundational (x.1), Thu = advanced (x.2).

  • 5 ECTS: attend & pass foundational topics (Wednesday lecture) + foundational assignments.

  • 10 ECTS: attend both lecture days + complete foundational & advanced assignments. 

What you’ll learn

By the end you can:

  • Frame problems for classification, regression, and unsupervised learning.

  • Train, tune, and validate models responsibly (avoid leakage; use nested CV).

  • Understand and implement trees, ensembles, linear & kernel methods.

  • Build and optimize neural networks (MLP, CNNs, RNNs, Transformers).

  • Apply representation learning (AE, VAE, contrastive, self-supervised).

  • Reason about Bayesian and generative modeling (GANs, diffusion).

Topics

Lecture # Lecture (ID & topic) Date
1.1 Introduction (Overview, KNN classifier) Oct 15
1.2 KNN for regression, DNNR Oct 16
2.1 Clustering (k-Means, DBSCAN) Oct 22
2.2 Hierarchical & Soft-Clustering (EM, GMM); Deep Embedded Clustering (DEC); Contrastive Clustering; Spectral Clustering Oct 23
3.1 Linear Models Oct 29
3.2 SVMs; Multinomial Logistic Regression (Softmax); Generalized Linear Models Oct 30
4.1 Principal Component Analysis (Dimensionality Reduction, Covariance Matrix, Gaussian Models) Nov 05
4.2 ICA; Nonlinear Dimensionality Reduction (t-SNE, UMAP) Nov 06
5.1 Model Validation Nov 12
5.2 Hyperoptimization, Ablation studies; metrics for validation; data leakage; Nested Cross-Validation Nov 13
6.1 Decision Trees, Bagging, Random Forest Nov 19
6.2 Ensembling: Extremely Randomized Trees; Rotation/Oblique Decision Trees; NODE (Neural Oblivious Decision Ensembles); DeepGBM (brief) Nov 20
7.1 Boosting (AdaBoost + Viola–Jones); Gradient-Boosted Trees (GBTs) Nov 26
7.2 XGBoost; CatBoost; LightGBM Nov 27
8.1 Multi-Layer Perceptron (classic + modern) Dec 03
8.2 Boltzmann Machines; Deep Boltzmann Machine (DBM); probabilistic modeling; Boltzmann generators; Hopfield networks Dec 04
9.1 Network Optimization (Gradient Descent + Backpropagation) Dec 10
9.2 Optimizers (Adam, RMSProp,…); non-gradient methods? (Evolutionary, Bayesian); Nesterov Accelerated Gradient (NAG); adaptive methods (AdaGrad, RMSProp, Adam) Dec 11
10.1 Convolutional Neural Networks (conv layer types; batch norm; dropout) Dec 17
10.2 Vision models (classification, detection, segmentation, pose); CNN architectures (VGG, ResNet, DenseNet, spatial transformer networks) Dec 18
11.1 Autoencoders & Variational Autoencoders; disentangled representation learning (β-VAE, factorVAE) Jan 07
11.2 Bayesian inference; Variational inference; Bayesian neural networks; MCMC Jan 08
12.1 Generative Adversarial Networks (GANs) Jan 14
12.2 Diffusion; Flow matching Jan 15
13.1 Recurrent Neural Networks (RNNs), LSTMs, GRU Jan 21
13.2 State Space Models (Mamba, Hyena) Jan 22
14.1 Attention & Transformers Jan 28
14.2 Large Language Models Jan 29
15.1 Contrastive Learning, SimCLR Feb 04
15.2 BYOL, I-JEPA, VICReg Feb 05
16.1 Recap + Q&A Feb 11
16.2 Recap + Q&A Feb 12

Assessment 

  • 5 ECTS: weekly assignments and exam, covering fundamental topics only

  • 10 ECTS: weekly assignments and exam, covering fundamental + advanced topics

Tutorials

Prerequisites & tools

  • Comfort with linear algebra, calculus, probability, and Python (NumPy/PyTorch/Scikit-learn).

  • We provide notebooks and data; coding is required for both tracks.

Discord Server for communication - https://discord.gg/TGFVFAH3c6

Basic Course Info

Course No Course Type Hours
19304201 Vorlesung 2
19304202 Übung 2

Time Span 15.10.2025 - 12.02.2026
Instructors
Paul Hagemann
Manuel Heurich
Tim Landgraf
Jianning Li

Study Regulation

0086c_k150 2014, BSc Informatik (Mono), 150 LPs
0086d_k135 2014, BSc Informatik (Mono), 135 LPs
0087d_k90 2015, BSc Informatik (Kombi), 90 LPs
0088d_m60 2015, MSc Informatik (Kombi), 60 LPs
0089b_MA120 2008, MSc Informatik (Mono), 120 LPs
0089c_MA120 2014, MSc Informatik (Mono), 120 LPs
0207b_m37 2015, MSc Informatik (Lehramt), 37 LPs
0208b_m42 2015, MSc Informatik (Lehramt), 42 LPs
0458a_m37 2015, MSc Informatik (Lehramt), 37 LPs
0471a_m42 2015, MSc Informatik (Lehramt), 42 LPs
0556a_m37 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs
0556b_m37 2023, M-Ed Informatik Fach 1 (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LP
0557a_m42 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs
0557b_m42 2023, M-Ed Informatik Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs
0590a_MA120 2019, MSc Data Science, 120 LP
0590b_MA120 2021, MSc Data Science, 120 LP

Machine Learning W25/26
to Whiteboard Site

Main Events

Day Time Location Details
Wednesday 12-14 T9/Gr. Hörsaal 2025-10-15 - 2026-02-11
Thursday 14-16 T9/Gr. Hörsaal 2025-10-16 - 2026-02-12
Thursday 14-16 2025-12-04 - 2025-12-18
Daily 12-14 2025-12-10 - 2025-12-17

Accompanying Events

Day Time Location Details
Monday 14-16 T9/SR 005 Übungsraum Übung 01

Machine Learning W25/26
to Whiteboard Site

Most Recent Announcement

:  

Currently there are no public announcements for this course.


Older announcements

Machine Learning W25/26
to Whiteboard Site

Currently there are no resources for this course available.
Or at least none which you're allowed to see with your current set of permissions.
Maybe you have to log in first.