Computer Vision W24/25
to Whiteboard Site

Description

Content

In this course, "Computer Vision" will primarily focus on the recognition of objects or events in images and videos. The lecture will be split into classical CV algorithms and modern solutions based on neural networks. 

1.Introduction

2.Edge Detectors

3.Histograms

4.Optic flow

5.Hough Transform

6.SIFT / SURF

7.Introduction to Neural Information Processing

8.Convolutional Neural Networks

9.Image Classification, Object Detection

10.Semantic Segmentation

11.Pose Estimation

12.Vision Transformers

13.Self-Supervised Learning: Masked Autoencoders, Contrastive Learning

14.Self-Supervised Learning: SimCLR, BYOL, VICREG

Lecture Format

We will have lectures on the topics outlined above. Those are either already available on YouTube or we will record and upload new ones (see also below on  How To Introduce New Topics). 

Lecture Videos

About 80% of the lectures will be from this list: 

https://www.youtube.com/playlist?list=PLs7Vp-pCDX7yrUmgkxAEdNcgriOU6IBg5 

For the rest we will create a new list, URL will be posted here. 

Lecture PDFs and Slides

Can be found in the resources section. If you have found typos, mistakes or are having a hard time understanding the contents, just let us know!

How To Introduce New Topics

If you think you have found a great paper, or have always been fascinated by a specific topic within the field of computer vision, please send us your suggestions via Mattermost (see below). We will have a vote to see how your peers think about this new topic. 

Mattermost

My research lab uses Mattermost, an open source messaging app. I would like to try it this semester for the course.  If you already have an account for the university hosted gitlab, you should be able to access the channel: https://mattermost.imp.fu-berlin.de/biorobotics/channels/ws-2425-computer-vision

If you are having problems logging in or accessing Mattermost, let me know. 

Basic Course Info

Course No Course Type Hours
19315501 Vorlesung 2
19315502 Übung 2

Time Span 16.10.2024 - 12.02.2025
Instructors
Manuel Heurich
Tim Landgraf

Study Regulation

0086c_k150 2014, BSc Informatik (Mono), 150 LPs
0086d_k135 2014, BSc Informatik (Mono), 135 LPs
0087d_k90 2015, BSc Informatik (Kombi), 90 LPs
0088d_m60 2015, MSc Informatik (Kombi), 60 LPs
0089b_MA120 2008, MSc Informatik (Mono), 120 LPs
0089c_MA120 2014, MSc Informatik (Mono), 120 LPs
0207b_m37 2015, MSc Informatik (Lehramt), 37 LPs
0208b_m42 2015, MSc Informatik (Lehramt), 42 LPs
0458a_m37 2015, MSc Informatik (Lehramt), 37 LPs
0471a_m42 2015, MSc Informatik (Lehramt), 42 LPs
0511a_m72 2016, MSc Informatik (Lehramt), 72 LPs
0511b_m72 2019, M-Ed Fach 2 Informatik (Lehramt an Gymnasien - Quereinstieg), 72 LP
0556a_m37 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs
0556b_m37 2023, M-Ed Informatik Fach 1 (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LP
0557a_m42 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs
0557b_m42 2023, M-Ed Informatik Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs
0590a_MA120 2019, MSc Data Science, 120 LP

Computer Vision W24/25
to Whiteboard Site

Main Events

Day Time Location Details
Wednesday 10-12 A6/SR 032 Seminarraum 2024-10-16 - 2025-02-12

Accompanying Events

Day Time Location Details
Tuesday 14-16 T9/049 Seminarraum Übung 01

Computer Vision W24/25
to Whiteboard Site

Most Recent Announcement

:  

Currently there are no public announcements for this course.


Older announcements

Computer Vision W24/25
to Whiteboard Site

Currently there are no resources for this course available.
Or at least none which you're allowed to see with your current set of permissions.
Maybe you have to log in first.