In this course, "Computer Vision" will primarily focus on the recognition of objects or events in images and videos. The lecture will be split into classical CV algorithms and modern solutions based on neural networks.
1.Introduction
2.Edge Detectors
3.Histograms
4.Optic flow
5.Hough Transform
6.SIFT / SURF
7.Introduction to Neural Information Processing
8.Convolutional Neural Networks
9.Image Classification, Object Detection
10.Semantic Segmentation
11.Pose Estimation
12.Vision Transformers
13.Self-Supervised Learning: Masked Autoencoders, Contrastive Learning
14.Self-Supervised Learning: SimCLR, BYOL, VICREG
We will have lectures on the topics outlined above. Those are either already available on YouTube or we will record and upload new ones (see also below on How To Introduce New Topics).
About 80% of the lectures will be from this list:
https://www.youtube.com/playlist?list=PLs7Vp-pCDX7yrUmgkxAEdNcgriOU6IBg5
For the rest we will create a new list, URL will be posted here.
Can be found in the resources section. If you have found typos, mistakes or are having a hard time understanding the contents, just let us know!
If you think you have found a great paper, or have always been fascinated by a specific topic within the field of computer vision, please send us your suggestions via Mattermost (see below). We will have a vote to see how your peers think about this new topic.
My research lab uses Mattermost, an open source messaging app. I would like to try it this semester for the course. If you already have an account for the university hosted gitlab, you should be able to access the channel: https://mattermost.imp.fu-berlin.de/biorobotics/channels/ws-2425-computer-vision
If you are having problems logging in or accessing Mattermost, let me know.
Course No | Course Type | Hours |
---|---|---|
19315501 | Vorlesung | 2 |
19315502 | Übung | 2 |
Time Span | 16.10.2024 - 12.02.2025 |
---|---|
Instructors |
Manuel Heurich
Tim Landgraf
|
0086c_k150 | 2014, BSc Informatik (Mono), 150 LPs |
0086d_k135 | 2014, BSc Informatik (Mono), 135 LPs |
0087d_k90 | 2015, BSc Informatik (Kombi), 90 LPs |
0088d_m60 | 2015, MSc Informatik (Kombi), 60 LPs |
0089b_MA120 | 2008, MSc Informatik (Mono), 120 LPs |
0089c_MA120 | 2014, MSc Informatik (Mono), 120 LPs |
0207b_m37 | 2015, MSc Informatik (Lehramt), 37 LPs |
0208b_m42 | 2015, MSc Informatik (Lehramt), 42 LPs |
0458a_m37 | 2015, MSc Informatik (Lehramt), 37 LPs |
0471a_m42 | 2015, MSc Informatik (Lehramt), 42 LPs |
0511a_m72 | 2016, MSc Informatik (Lehramt), 72 LPs |
0511b_m72 | 2019, M-Ed Fach 2 Informatik (Lehramt an Gymnasien - Quereinstieg), 72 LP |
0556a_m37 | 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs |
0556b_m37 | 2023, M-Ed Informatik Fach 1 (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LP |
0557a_m42 | 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs |
0557b_m42 | 2023, M-Ed Informatik Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs |
0590a_MA120 | 2019, MSc Data Science, 120 LP |
Day | Time | Location | Details |
---|---|---|---|
Wednesday | 10-12 | A6/SR 032 Seminarraum | 2024-10-16 - 2025-02-12 |
Day | Time | Location | Details |
---|---|---|---|
Tuesday | 14-16 | T9/049 Seminarraum | Übung 01 |