Softwareprojekt: Maschinelles Lernen und Erklärbarkeit für verbesserte (Krebs-)behandlung S25
to Whiteboard Site

Description

Softwareproject: Machine Learning and Explainability for Improved (Cancer) Treatment

In the software project, we will implement, train, and evaluate various machine learning (ML) methods. The focus of the project is on neural networks (NN) and their explainability. We will compare the methods with different baseline models, such as regression models. The various ML methods will be applied to a specific dataset, e.g., for predicting drug combinations for cancer treatment, and evaluated accordingly. The dataset will be prepared by us and analyzed using the implemented methods. Additionally, we will focus on explainability to ensure that the predictions of the ML models are understandable and interpretable. For this purpose, we will integrate appropriate explainability techniques to better understand and visualize the decision-making processes of the models.

The programming language is Python, and we plan to use modern Python modules for ML like scikit-learn, and PyTorch. Good Python skills are required. The goal is to create a Python package that provides reusable code for preprocessing, training ML models, and evaluating results with documentation (e.g., using Sphinx) for the specific use case. The software project takes place throughout the semester and can also be conducted in English.

___

Weekly seminar

Tuesdays 15:30 (3:30pm) in room T9/K40 (down stairs) 

Online: https://fu-berlin.webex.com/fu-berlin/j.php?MTID=m90ea095a1ae820a4b3a7552fafcfd127 
If you participate online please turn on your video, otherwise it will not count towards the active and regular participation. Also always let me know beforehand if you want to participate online so that I can start the Webex meeting

Basic Course Info

Course No Course Type Hours
19334212 Projektseminar 2

Time Span 26.02.2025 - 15.07.2025
Instructors
Katharina Baum
Pauline Hiort
Pascal Iversen

Study Regulation

0086c_k150 2014, BSc Informatik (Mono), 150 LPs
0086d_k135 2014, BSc Informatik (Mono), 135 LPs
0087d_k90 2015, BSc Informatik (Kombi), 90 LPs
0088d_m60 2015, MSc Informatik (Kombi), 60 LPs
0089c_MA120 2014, MSc Informatik (Mono), 120 LPs
0159c_m30 2014, ABV Informatik, 30 LPs
0159d_m30 2023, ABV Informatik, 30LPs
0207b_m37 2015, MSc Informatik (Lehramt), 37 LPs
0208b_m42 2015, MSc Informatik (Lehramt), 42 LPs
0458a_m37 2015, MSc Informatik (Lehramt), 37 LPs
0471a_m42 2015, MSc Informatik (Lehramt), 42 LPs
0511a_m72 2016, MSc Informatik (Lehramt), 72 LPs
0511b_m72 2019, M-Ed Fach 2 Informatik (Lehramt an Gymnasien - Quereinstieg), 72 LP
0556a_m37 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs
0556b_m37 2023, M-Ed Informatik Fach 1 (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LP
0557a_m42 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs
0557b_m42 2023, M-Ed Informatik Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs
0590a_MA120 2019, MSc Data Science, 120 LP
0590b_MA120 2021, MSc Data Science, 120 LP

Softwareprojekt: Maschinelles Lernen und Erklärbarkeit für verbesserte (Krebs-)behandlung S25
to Whiteboard Site

Main Events

Day Time Location Details
Tuesday 15-17 T9/K40 Multimediaraum 2025-04-29 - 2025-07-15
Daily 16-18 A6/SR 007/008 Seminarraum 2025-04-15 - 2025-04-22

Softwareprojekt: Maschinelles Lernen und Erklärbarkeit für verbesserte (Krebs-)behandlung S25
to Whiteboard Site

Most Recent Announcement

:  

Currently there are no public announcements for this course.


Older announcements

Softwareprojekt: Maschinelles Lernen und Erklärbarkeit für verbesserte (Krebs-)behandlung S25
to Whiteboard Site

Currently there are no resources for this course available.
Or at least none which you're allowed to see with your current set of permissions.
Maybe you have to log in first.