| |

A Second Generation of Quantum Technology W18/19
to Whiteboard Site

Description

The insight that quantum mechanics offers into the nature of matter at the microscopic level has inspired a wide range of technologies reaching into virtually every aspect of modern industrial society. Transistors, lasers, magnetic resonance tomography and atomic clocks are prominent examples of first generation quantum technologies operating with effects from large ensembles of quantum particles. A series of exceptional achievements in theory and experiments indicate that this first “quantum revolution” will not be the last [1-3]. A seemingly trivial switch to addressing the state of individual quantum particles or quasi-particles as well as their correlations and entanglement opens a regime of effects for new technological innovations rooted in the Einstein-Podolsky-Rosen-Paradoxon [4,5]. How does this fundamental concept in quantum physics translate to new technologies? Can "spooky action at a distance" guarantee the security of digital information and communication in the future? Is "ghost imaging" a technique that will address seemingly unsolvable problems in modern optics? What lies behind the terminology "quantum supremacy" in the comparison of classical und quantum computing and where is the quantum approach truly advantageous? The seminar will address these and other questions along with the fundamentals behind modern "second generation" quantum technologies.


Literatur

[1] Nobel Prize in Physics 2012: Serge Haroche and David J. Wineland: "For ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

[2] Wolf Prize in Physics 2010: Alain Aspect, John Clauser and Anton Zeilinger: "For their fundamental conceptual and experimental contributions to the foundations of quantum physics, specifically an increasingly sophisticated series of tests of Bell's inequalities or extensions thereof using entangled quantum states”     

[3] Richard P. Feynman, "Simulating Physics with Computers" Int. J. Theor. Phys. 21 (1982) 467.

[4] Albert Einstein, Boris Y. Podolsky and Nathan Rosen, "Can a quantum-mechanical description of physical reality be considered complete?" Phys. Rev. Lett. 47 (1935) 777.  

[5] John. S. Bell, "On the Einstein-Podolsky-Rosen Paradoxon" Physics 1 (1964) 195.

Basic Course Info

Course No Course Type Hours
20113911 Seminar 2

Time Span 15.10.2018 - 11.02.2019
Instructors
Torsten Siebert
Torsten Siebert

Study Regulation

0352b_MA120 2013, MSc Physik (Mono), 120 LPs

A Second Generation of Quantum Technology W18/19
to Whiteboard Site

Main Events

Day Time Location Details
Monday 16-18 1.3.21 Seminarraum T1 2018-10-15 - 2019-02-11

A Second Generation of Quantum Technology W18/19
to Whiteboard Site

Most Recent Announcement

:  

Currently there are no public announcements for this course.


Older announcements

A Second Generation of Quantum Technology W18/19
to Whiteboard Site

Currently there are no resources for this course available.
Or at least none which you're allowed to see with your current set of permissions.
Maybe you have to log in first.