We post a youtube video each week and you ask your questions in Q&A sessions (link see below). These are the dates for the sessions:
02 Nov 2020 - Introduction, notation, k-nearest neighbors
09 Nov 2020 - Clustering (kMeans, DBSCAN)
16 Nov 2020 - Linear and logistic regression
23 Nov 2020 - Model validation
30 Nov 2020 - The covariance matrix, PCA
07 Dec 2020 - Bagging, decision trees, random forests
14 Dec 2020 - Boosting (AdaBoost), Viola-Jones
21 Dec 2020* - Perceptron, multi-layer perceptron
11 Jan 2021 - Gradient Descent, Backprop, Optimizers (SGD, Adam, RProp)
18 Jan 2021 - ConvNets
25 Jan 2021 - Unsupervised representation learning I (VAEs, Glow)
01 Feb 2021 - Unsupervised representation learning II (GANs)
08 Feb 2021 - RNNs
15 Feb 2021 - Attention, Transformers
22 Feb 2021 - Attribution, Adversarial Examples (BONUS)
* optional Q&A session (Christmas holidays!)
https://youtube.com/playlist?list=PLs7Vp-pCDX7yu38RbJfuyMUrFZ5877uh1
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://www.deeplearningbook.org/
Hand in your assignments here (Create a group of two/three people, see discord):
https://app.eduflow.com/join/D7F5CD
Basics in linear algebra, algorithms and data structures.
Course No | Course Type | Hours |
---|---|---|
19304201 | Vorlesung | 2 |
19304202 | Übung | 2 |
Time Span | 02.11.2020 - 01.03.2021 |
---|---|
Instructors |
Tim Landgraf
Daniel Göhring
Maximilian Gerhard Granz
Luis Herrmann
|
0086c_k150 | 2014, BSc Informatik (Mono), 150 LPs |
0086d_k135 | 2014, BSc Informatik (Mono), 135 LPs |
0087d_k90 | 2015, BSc Informatik (Kombi), 90 LPs |
0088d_m60 | 2015, MSc Informatik (Kombi), 60 LPs |
0089b_MA120 | 2008, MSc Informatik (Mono), 120 LPs |
0089c_MA120 | 2014, MSc Informatik (Mono), 120 LPs |
0207b_m37 | 2015, MSc Informatik (Lehramt), 37 LPs |
0208b_m42 | 2015, MSc Informatik (Lehramt), 42 LPs |
0458a_m37 | 2015, MSc Informatik (Lehramt), 37 LPs |
0471a_m42 | 2015, MSc Informatik (Lehramt), 42 LPs |
0556a_m37 | 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs |
0557a_m42 | 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs |
0590b_MA120 | 2021, MSc Data Science, 120 LP |
Day | Time | Location | Details |
---|---|---|---|
Monday | 10-12 | Online | 2020-11-02 - 2021-02-22 |
Day | Time | Location | Details |
---|---|---|---|
Monday | 14-16 | Online | Übung 01 |
Dear students,
Luis, Max and I have updated our lecture plan,
These items have changed:
New Q&A dates (videos will be made available in the week before, assignments are due at least one week later):
02 Nov 2020 - Introduction, notation, k-nearest neighbors
09 Nov 2020 - Clustering (kMeans, DBSCAN)
16 Nov 2020 - Linear and logistic regression
23 Nov 2020 - Model validation
30 Nov 2020 - The covariance matrix, PCA
07 Dec 2020 - Bagging, decision trees, random forests
14 Dec 2020 - Boosting (AdaBoost), Viola-Jones
21 Dec 2020* - Perceptron, multi-layer perceptron
11 Jan 2021 - Gradient Descent, Backprop, Optimizers (SGD, Adam, RProp)
18 Jan 2021 - ConvNets
25 Jan 2021 - Unsupervised representation learning I (VAEs, Glow)
01 Feb 2021 - Unsupervised representation learning II (GANs)
08 Feb 2021 - RNNs
15 Feb 2021 - Reinforcement Learning, Policy Gradients
22 Feb 2021 - Attribution, Adversarial Examples (BONUS)
Mid-term and final exams
After a lengthy discussion we agreed to:
Why don't we get more time?
The reasons we decided for this solution are
So, in other words: exams will be shorter and easier.
Take care,
Max, Luis and Tim