Mustererkennung / Machine Learning W20/21
to Whiteboard Site

Description

Content

We post a youtube video each week and you ask your questions in Q&A sessions (link see below). These are the dates for the sessions:

02 Nov 2020 - Introduction, notation, k-nearest neighbors
09 Nov 2020 - Clustering (kMeans, DBSCAN)
16 Nov 2020 - Linear and logistic regression
23 Nov 2020 - Model validation
30 Nov 2020 - The covariance matrix, PCA
07 Dec 2020 - Bagging, decision trees, random forests
14 Dec 2020 - Boosting (AdaBoost), Viola-Jones
21 Dec 2020* - Perceptron, multi-layer perceptron
11 Jan 2021 - Gradient Descent, Backprop, Optimizers (SGD, Adam, RProp)
18 Jan 2021 - ConvNets
25 Jan 2021 - Unsupervised representation learning I  (VAEs, Glow)
01 Feb 2021 - Unsupervised representation learning II (GANs)
08 Feb 2021 - RNNs
15 Feb 2021 - Attention, Transformers
22 Feb 2021 - Attribution, Adversarial Examples (BONUS)

* optional Q&A session (Christmas holidays!)

Video Lectures on YouTube

https://youtube.com/playlist?list=PLs7Vp-pCDX7yu38RbJfuyMUrFZ5877uh1 

Literature

https://mml-book.com/ 

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

http://www.deeplearningbook.org/

WebEx-Rooms

Lecture Q&A sessions

Assignments Q&A sessions

Discord Server

https://discord.gg/cHmx5f6akv

Eduflow

Hand in your assignments here (Create a group of two/three people, see discord):

https://app.eduflow.com/join/D7F5CD

Guideline for Reviews

https://mycampus.imp.fu-berlin.de/access/content/group/6e8f026c-42be-42e0-93d9-a22d388c5c66/How_to_grade_your_fellow_students.pdf

Prerequisites

Basics in linear algebra, algorithms and data structures. 

Basic Course Info

Course No Course Type Hours
19304201 Vorlesung 2
19304202 Übung 2

Time Span 02.11.2020 - 01.03.2021
Instructors
Tim Landgraf
Daniel Göhring
Maximilian Gerhard Granz
Luis Herrmann

Study Regulation

0086c_k150 2014, BSc Informatik (Mono), 150 LPs
0086d_k135 2014, BSc Informatik (Mono), 135 LPs
0087d_k90 2015, BSc Informatik (Kombi), 90 LPs
0088d_m60 2015, MSc Informatik (Kombi), 60 LPs
0089b_MA120 2008, MSc Informatik (Mono), 120 LPs
0089c_MA120 2014, MSc Informatik (Mono), 120 LPs
0207b_m37 2015, MSc Informatik (Lehramt), 37 LPs
0208b_m42 2015, MSc Informatik (Lehramt), 42 LPs
0458a_m37 2015, MSc Informatik (Lehramt), 37 LPs
0471a_m42 2015, MSc Informatik (Lehramt), 42 LPs
0556a_m37 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs
0557a_m42 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs
0590b_MA120 2021, MSc Data Science, 120 LP

Mustererkennung / Machine Learning W20/21
to Whiteboard Site

Main Events

Day Time Location Details
Monday 10-12 Online 2020-11-02 - 2021-02-22

Accompanying Events

Day Time Location Details
Monday 14-16 Online Übung 01

Mustererkennung / Machine Learning W20/21
to Whiteboard Site

Most Recent Announcement

2020-11-26:  Change in Lecture Plan

Dear students, 

Luis, Max and I have updated our lecture plan,

These items have changed: 

  • We will have an optional Q&A session on Perceptron and MLPs on 21 Dec 2020.
  • The mid-term exam will be published 4 Jan 2020, 10:00 and required to be submitted 13:00.  See below for more details. 
  • All lecture Q&As of the second half are shifted by one week (see below)
  • The final exam will be published 27 Feb 2020, 10:00 and required to be submitted 13:00. 

New Q&A dates (videos will be made available in the week before, assignments are due at least one week later):

02 Nov 2020 - Introduction, notation, k-nearest neighbors
09 Nov 2020 - Clustering (kMeans, DBSCAN)
16 Nov 2020 - Linear and logistic regression
23 Nov 2020 - Model validation
30 Nov 2020 - The covariance matrix, PCA
07 Dec 2020 - Bagging, decision trees, random forests
14 Dec 2020 - Boosting (AdaBoost), Viola-Jones
21 Dec 2020* - Perceptron, multi-layer perceptron
11 Jan 2021 - Gradient Descent, Backprop, Optimizers (SGD, Adam, RProp)
18 Jan 2021 - ConvNets
25 Jan 2021 - Unsupervised representation learning I  (VAEs, Glow)
01 Feb 2021 - Unsupervised representation learning II (GANs)
08 Feb 2021 - RNNs
15 Feb 2021 - Reinforcement Learning, Policy Gradients
22 Feb 2021 - Attribution, Adversarial Examples (BONUS)

Mid-term and final exams

After a lengthy discussion we agreed to:

  • conduct exams in a 3 hours window (as opposed to a day or more)
  • you download the questions at 10:00 and submit your answers to the whiteboard not later than 13:00 
  • You will find a mix of multiple choice and full-text questions

Why don't we get more time?

The reasons we decided for this solution are

  • 3 hours are enough time for something that we usually do in 45 min
  • giving you more time creates potential for unfairness and requires the questions to be harder to copy/paste from the web

So, in other words: exams will be shorter and easier. 

Take care, 

Max, Luis and Tim

 



Published by: Tim Landgraf
Older announcements

Mustererkennung / Machine Learning W20/21
to Whiteboard Site

Currently there are no resources for this course available.
Or at least none which you're allowed to see with your current set of permissions.
Maybe you have to log in first.