Seminar: Informationstheoretische Grundlagen von ML W22/23
to Whiteboard Site

Description

Tentative list of papers:

Choose one of the papers and write your Full Name and Matrikelnummer in the
following google sheet: LINK TO GOOGLE SHEET

Session 1: 04.11.22
• GAN I: GAN, f-GAN
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., &
Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63 (11), 139–144
Nowozin, S., Cseke, B., & Tomioka, R. (2016). F-gan: Training generative neural samplers using
variational divergence minimization. Advances in neural information processing systems, 29
• GAN I: W-GAN
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. International
conference on machine learning, 214–223

Session 2: 11.11.22
• Mutual Information Estimation I:
Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A., & Hjelm, D. (2018).
Mutual information neural estimation. International conference on machine learning, 531–540
• Mutual Information Estimation II:
Poole, B., Ozair, S., Van Den Oord, A., Alemi, A., & Tucker, G. (2019). On variational bounds of
mutual information. International Conference on Machine Learning, 5171–5180

Session 3: 18.11.22
• Representation Learning:
Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A., & Bengio,
Y. (2018). Learning deep representations by mutual information estimation and maximization. arXiv
preprint arXiv:1808.06670
• Paired Representations:
Sanchez, E. H., Serrurier, M., & Ortner, M. (2020). Learning disentangled representations via mutual
information estimation. European Conference on Computer Vision, 205–221

Session 4: 25.11.22
• GAN II: InfoGAN
Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). Infogan: Interpretable
representation learning by information maximizing generative adversarial nets. Advances in
neural information processing systems, 29
• GAN II: BiGAN?
Donahue, J., Kr¨ahenb¨uhl, P., & Darrell, T. (2016). Adversarial feature learning. arXiv preprint
arXiv:1605.09782

Session 5: 02.12.22
• Information Bottleneck
Tishby, N., Pereira, F. C., & Bialek, W. (2000). The information bottleneck method. arXiv preprint
physics/0004057
• Deep Information Bottleneck
Tishby, N., & Zaslavsky, N. (2015). Deep learning and the information bottleneck principle. 2015
ieee information theory workshop (itw), 1–5

Session 6: 09.12.22
• VAE I: VAE
Kingma, D. P., &Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114
• VAE I: β-VAE
Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., & Lerchner, A. (2018).
Understanding disentangling in \beta-vae. arXiv preprint arXiv:1804.03599

Session 7: 16.12.22
• Conditional mutual information estimation
Mukherjee, S., Asnani, H., & Kannan, S. (2020). Ccmi: Classifier based conditional mutual information
estimation. Uncertainty in artificial intelligence, 1083–1093
• Neural Estimation of the Rate-Distrortion Function
Lei, E., Hassani, H., & Bidokhti, S. S. (2022). Neural estimation of the rate-distortion function for
massive datasets. 2022 IEEE International Symposium on Information Theory (ISIT), 608–613

Session 8: 06.01.23
• VAE II: Rate-Distortion Problem and VAE Alemi, A., Poole, B., Fischer, I., Dillon, J., Saurous,
R. A., & Murphy, K. (2018). Fixing a broken elbo. International Conference on Machine Learning,
159–168
• VAE II: Unified perspective on generative models Zhao, S., Song, J., & Ermon, S. (2018). The
information autoencoding family: A lagrangian perspective on latent variable generative models.
arXiv preprint arXiv:1806.06514

Session 9: 13.01.23
• Diffusion Models I: DDPM
Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33, 6840–6851
• Diffusion Models II: SDE
Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based
generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456

Session 10: 20.01.23
• Visualizing high dimensional data using ML: t-SNE
Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal of machine learning
research, 9 (11)

Basic Course Info

Course No Course Type Hours
19331611 Seminar 2

Time Span 21.10.2022 - 17.02.2023
Instructors
Yi Cai
Hania Elkersh
Gerhard Wunder

Study Regulation

0086c_k150 2014, BSc Informatik (Mono), 150 LPs
0086d_k135 2014, BSc Informatik (Mono), 135 LPs
0087d_k90 2015, BSc Informatik (Kombi), 90 LPs
0088d_m60 2015, MSc Informatik (Kombi), 60 LPs
0089c_MA120 2014, MSc Informatik (Mono), 120 LPs
0207b_m37 2015, MSc Informatik (Lehramt), 37 LPs
0208b_m42 2015, MSc Informatik (Lehramt), 42 LPs
0458a_m37 2015, MSc Informatik (Lehramt), 37 LPs
0471a_m42 2015, MSc Informatik (Lehramt), 42 LPs
0556a_m37 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs
0557a_m42 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs
0590b_MA120 2021, MSc Data Science, 120 LP

Seminar: Informationstheoretische Grundlagen von ML W22/23
to Whiteboard Site

Main Events

Day Time Location Details
Friday 12-14 T9/053 Seminarraum 2022-10-21 - 2023-02-17

Seminar: Informationstheoretische Grundlagen von ML W22/23
to Whiteboard Site

Most Recent Announcement

:  

Currently there are no public announcements for this course.


Older announcements

Seminar: Informationstheoretische Grundlagen von ML W22/23
to Whiteboard Site

Currently there are no resources for this course available.
Or at least none which you're allowed to see with your current set of permissions.
Maybe you have to log in first.