Deep Learning S18
to Whiteboard Site

Description

Requirements:

Basics in linear algebra:


- Have routine in doing matrix-vector operations and their properties


- Matrix decompositions and properties (Eigenvalue d., Singular value d.)


- see: Linear Algebra 1+2, Numerics 1

Basics in calculus:


- Multivariate calculus, integration and differentiation, partial

derivatives


- Basics of optimization: Properties of minimum, maximum, saddle point


- see: Calculus 1+2

Basics in statistics:


- Random variables, PDF, CDF, moments and their properties.


- Transformations between random variables, Jacobians.

- see: Stochastics 1 or Statistical Physics 1

Basics in functional transforms:


- Fourier transform / DFT / FFT.

Programming:


Python. Numpy. Scipy. Jupyter notebooks. Git. Github


- Check the worksheets of this course to see if you are ready:


https://github.com/cwehmeyer/scipro
 

Additional Information

 

This lecture/lab course is suitable for Master students of Mathematics, Computer Science or Computational Sciences

Students of the Computational Sciences program can combine this lecture/lab course with 19234502 + 19234501 (Mathematical aspects in machine learning) to complete “complex algorithms A/B”

Physics modules matching this course are: BSc Complex Algorithms B, MSc Aufbaumodul Numerik IV

Qualification objectives: The students have a basic understanding of algebraic and computational methods for deep neural networks, their application scope and can practically build and train them with state-of-the-art software tools. They are familiar with typical deep learning structures and understand the relationship to their shallow counterparts.

Content:

- Perceptron

- Multilayer neural network and universal represenation theorem

- Backpropagation

- Deep feedforward networks

- Convolutional Neural Networks

- Autoencoder versus principal component analysis

- Time-autoencoder versus time-lagged independent component analysis

- Generative networks: Variational Autoencoders and Adversarial Generative Networks

- Active learning


  

Basic Course Info

Course No Course Type Hours
19238501 Vorlesung 2
19238502 Übung 2

Time Span 20.04.2018 - 08.10.2018
Instructors
Frank Noe
Christoph Wehmeyer
Moritz Hoffmann
Andreas Mardt
Luca Pasquali

Study Regulation

0086c_k150 2014, BSc Informatik (Mono), 150 LPs
0087d_k90 2015, BSc Informatik (Kombi), 90 LPs
0088d_m60 2015, MSc Informatik (Kombi), 60 LPs
0089b_MA120 2008, MSc Informatik (Mono), 120 LPs
0089c_MA120 2014, MSc Informatik (Mono), 120 LPs
0207b_m37 2015, MSc Informatik (Lehramt), 37 LPs
0208b_m42 2015, MSc Informatik (Lehramt), 42 LPs
0280b_MA120 2011, MSc Mathematik (Mono), 120 LPs
0458a_m37 2015, MSc Informatik (Lehramt), 37 LPs
0471a_m42 2015, MSc Informatik (Lehramt), 42 LPs
0496a_MA120 2016, MSc Computational Science (Mono), 120 LPs
0556a_m37 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs
0557a_m42 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs

Deep Learning S18
to Whiteboard Site

Main Events

Day Time Location Details
Friday 14-16 A3/Hs 001 Hörsaal 2018-04-20 - 2018-07-20

Accompanying Events

Day Time Location Details
Wednesday  8-10 T9/049 Seminarraum Übung 01
Wednesday 12-14 T9/049 Seminarraum Übung 03
Thursday 14-16 T9/049 Seminarraum Übung 02
Sunday ? - ? Pseudotutorium zur Kapazitätsplanung - potentielle Übungsteilnehmer melden sich bitte hier an!

Deep Learning S18
to Whiteboard Site

Most Recent Announcement

:  

Currently there are no public announcements for this course.


Older announcements

Deep Learning S18
to Whiteboard Site

Currently there are no resources for this course available.
Or at least none which you're allowed to see with your current set of permissions.
Maybe you have to log in first.