Requirements:
Basics in linear algebra:
- Have routine in doing matrix-vector operations and their properties
- Matrix decompositions and properties (Eigenvalue d., Singular value d.)
- see: Linear Algebra 1+2, Numerics 1
Basics in calculus:
- Multivariate calculus, integration and differentiation, partial
derivatives
- Basics of optimization: Properties of minimum, maximum, saddle point
- see: Calculus 1+2
Basics in statistics:
- Random variables, PDF, CDF, moments and their properties.
- Transformations between random variables, Jacobians.
- see: Stochastics 1 or Statistical Physics 1
Basics in functional transforms:
- Fourier transform / DFT / FFT.
Programming:
Python. Numpy. Scipy. Jupyter notebooks. Git. Github
- Check the worksheets of this course to see if you are ready:
https://github.com/cwehmeyer/scipro
This lecture/lab course is suitable for Master students of Mathematics, Computer Science or Computational Sciences
Students of the Computational Sciences program can combine this lecture/lab course with 19234502 + 19234501 (Mathematical aspects in machine learning) to complete “complex algorithms A/B”
Physics modules matching this course are: BSc Complex Algorithms B, MSc Aufbaumodul Numerik IV
Qualification objectives: The students have a basic understanding of algebraic and computational methods for deep neural networks, their application scope and can practically build and train them with state-of-the-art software tools. They are familiar with typical deep learning structures and understand the relationship to their shallow counterparts.
Content:
- Perceptron
- Multilayer neural network and universal represenation theorem
- Backpropagation
- Deep feedforward networks
- Convolutional Neural Networks
- Autoencoder versus principal component analysis
- Time-autoencoder versus time-lagged independent component analysis
- Generative networks: Variational Autoencoders and Adversarial Generative Networks
- Active learning
Course No | Course Type | Hours |
---|---|---|
19238501 | Vorlesung | 2 |
19238502 | Übung | 2 |
Time Span | 20.04.2018 - 08.10.2018 |
---|---|
Instructors |
Frank Noe
Christoph Wehmeyer
Moritz Hoffmann
Andreas Mardt
Luca Pasquali
|
0086c_k150 | 2014, BSc Informatik (Mono), 150 LPs |
0087d_k90 | 2015, BSc Informatik (Kombi), 90 LPs |
0088d_m60 | 2015, MSc Informatik (Kombi), 60 LPs |
0089b_MA120 | 2008, MSc Informatik (Mono), 120 LPs |
0089c_MA120 | 2014, MSc Informatik (Mono), 120 LPs |
0207b_m37 | 2015, MSc Informatik (Lehramt), 37 LPs |
0208b_m42 | 2015, MSc Informatik (Lehramt), 42 LPs |
0280b_MA120 | 2011, MSc Mathematik (Mono), 120 LPs |
0458a_m37 | 2015, MSc Informatik (Lehramt), 37 LPs |
0471a_m42 | 2015, MSc Informatik (Lehramt), 42 LPs |
0496a_MA120 | 2016, MSc Computational Science (Mono), 120 LPs |
0556a_m37 | 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs |
0557a_m42 | 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs |
Day | Time | Location | Details |
---|---|---|---|
Friday | 14-16 | A3/Hs 001 Hörsaal | 2018-04-20 - 2018-07-20 |
Day | Time | Location | Details |
---|---|---|---|
Wednesday | 8-10 | T9/049 Seminarraum | Übung 01 |
Wednesday | 12-14 | T9/049 Seminarraum | Übung 03 |
Thursday | 14-16 | T9/049 Seminarraum | Übung 02 |
Sunday | ? - ? | Pseudotutorium zur Kapazitätsplanung - potentielle Übungsteilnehmer melden sich bitte hier an! |