Mathematical modelling of spatial or spatial/temporal phenomena such as porous medium flow, solidification of melts, weather prediction, etc. typically leads to partial differential equations (pdes). After some remarks on the modelling with and classification of pdes, the course will concentrate on elliptic problems. Starting with a brief introduction to the classical theory (existence and uniqueness of solutions, Green's functions) and assiciated difference methods we will mainly focus on weak solutions and their approximation by finite element methods. Adaptivity and multigrid methods will be also discussed.
Homepage:Wiki der Numerik II
Prerequisites for this course are basic knowledge in calculus (Analysis I-III) and Numerical Analysis (Numerik I). Some knowledge in Functional Analysis will help a lot.
Course No | Course Type | Hours |
---|---|---|
19215201 | Vorlesung | 4 |
19215202 | Übung | 2 |
Time Span | 16.04.2018 - 05.10.2018 |
---|---|
Instructors |
Ana Djurdjevac
Ana Djurdjevac
Carsten Gräser
|
0089c_MA120 | 2014, MSc Informatik (Mono), 120 LPs |
0280a_MA120 | 2007, MSc Mathematik (Mono), 120 LPs |
0280b_MA120 | 2011, MSc Mathematik (Mono), 120 LPs |
0352a_MA120 | 2009, MSc Physik (Mono), 120 LPs |
0496a_MA120 | 2016, MSc Computational Science (Mono), 120 LPs |
Day | Time | Location | Details |
---|---|---|---|
Monday | 12-14 | A6/SR 031 Seminarraum | 2018-04-16 - 2018-07-16 |
Wednesday | 12-14 | A6/SR 031 Seminarraum | 2018-04-18 - 2018-07-18 |
Day | Time | Location | Details |
---|---|---|---|
Monday | 10-12 | A3/ 024 Seminarraum | Übung 01 |
Tuesday | 10-12 | A6/SR 009 Seminarraum | Übung 01 |
Sunday | ? - ? | Pseudotutorium zur Kapazitätsplanung - potentielle Übungsteilnehmer melden sich bitte hier an! |