Maschinelles Lernen für Data Science W21/22
to Whiteboard Site

Description

Welcome to the Machine Learning for Data Science lecture

The course provides an overview of machine learning methods and algorithms for different learning tasks, namely supervised, unsupervised and reinforcement learning.

In the first part of the course, for each task the main algorithms and techniques will be covered including experimentation and evaluation aspects.

In the second part of the course, we will focus on specific learning challenges including high-dimensionality, non-stationarity, label-scarcity and class-imbalance.

By the end of the course, you will have learned how to build machine learning models for different problems, how to properly evaluate their performance and how to tackle specific learning challenges.

 

Syllabus

Part 1

  • Supervised learning
  • Unsupervised learning
  • Reinforcement learning
  • Outlier detection

Part 2

  • Machine learning for high-dimensional data
  • Machine learning in non-stationary environments
  • Machine learning under label scarcity

 

Requirements:

Basic knowledge of mathematics, algorithms & data structures and programming (Python).

 

Schedule:

The current plan is a hybrid lecture, for which some students attend in the classroom and others online via livestreaming (Webex). Regarding the in-person teaching part, we remain flexible to the pandemic, student and teaching staff needs and we will make adjustments and changes accordingly.

  • Lectures (#2 lectures per week):
    • Wednesdays (16:00-18:00, Room: T9  (Takustr. 9)/Gr.Hörsaal & Webex link)
    • Thursdays (12:00-14:00, Room: A3 (Arnimallee 3)/Hs 001 Hörsaal & Webex link)
  • Tutorials (#1 tutorial per week, in 2 groups):

 

Discord invitation link:

https://discord.gg/umJDx9nzTd

 

For in-person attendance, please follow the official rules

1st Lecture date: Wednesday 27/10/2021

 

1st Tutorial date: Tuesday 02/11/2021

Basic Course Info

Course No Course Type Hours
19330101 Vorlesung 4
19330102 Übung 2

Time Span 20.10.2021 - 17.02.2022
Instructors
Grégoire Montavon
Manuel Heurich
Anton Levin Kriese

Study Regulation

0086c_k150 2014, BSc Informatik (Mono), 150 LPs
0086d_k135 2014, BSc Informatik (Mono), 135 LPs
0087d_k90 2015, BSc Informatik (Kombi), 90 LPs
0088d_m60 2015, MSc Informatik (Kombi), 60 LPs
0089b_MA120 2008, MSc Informatik (Mono), 120 LPs
0089c_MA120 2014, MSc Informatik (Mono), 120 LPs
0207b_m37 2015, MSc Informatik (Lehramt), 37 LPs
0208b_m42 2015, MSc Informatik (Lehramt), 42 LPs
0458a_m37 2015, MSc Informatik (Lehramt), 37 LPs
0471a_m42 2015, MSc Informatik (Lehramt), 42 LPs
0556a_m37 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs
0557a_m42 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs
0590a_MA120 2019, MSc Data Science, 120 LP
0590b_MA120 2021, MSc Data Science, 120 LP

Maschinelles Lernen für Data Science W21/22
to Whiteboard Site

Main Events

Day Time Location Details
Wednesday 16-18 T9/Gr. Hörsaal 2021-10-20 - 2022-02-16
Thursday 12-14 A3/Hs 001 Hörsaal 2021-10-21 - 2022-02-17

Accompanying Events

Day Time Location Details
Tuesday 12-14 T9/SR 005 Übungsraum Übung 01
Tuesday 14-16 T9/SR 005 Übungsraum Übung 02

Maschinelles Lernen für Data Science W21/22
to Whiteboard Site

Most Recent Announcement

:  

Currently there are no public announcements for this course.


Older announcements

Maschinelles Lernen für Data Science W21/22
to Whiteboard Site

Currently there are no resources for this course available.
Or at least none which you're allowed to see with your current set of permissions.
Maybe you have to log in first.