The course provides an overview of machine learning methods and algorithms for different learning tasks, namely supervised, unsupervised and reinforcement learning.
In the first part of the course, for each task the main algorithms and techniques will be covered including experimentation and evaluation aspects.
In the second part of the course, we will focus on specific learning challenges including high-dimensionality, non-stationarity, label-scarcity and class-imbalance.
By the end of the course, you will have learned how to build machine learning models for different problems, how to properly evaluate their performance and how to tackle specific learning challenges.
Part 1
Part 2
Basic knowledge of mathematics, algorithms & data structures and programming (Python).
The current plan is a hybrid lecture, for which some students attend in the classroom and others online via livestreaming (Webex). Regarding the in-person teaching part, we remain flexible to the pandemic, student and teaching staff needs and we will make adjustments and changes accordingly.
Discord invitation link:
For in-person attendance, please follow the official rules.
1st Lecture date: Wednesday 27/10/2021
1st Tutorial date: Tuesday 02/11/2021
Course No | Course Type | Hours |
---|---|---|
19330101 | Vorlesung | 4 |
19330102 | Übung | 2 |
Time Span | 20.10.2021 - 17.02.2022 |
---|---|
Instructors |
Grégoire Montavon
Manuel Heurich
Anton Levin Kriese
|
0086c_k150 | 2014, BSc Informatik (Mono), 150 LPs |
0086d_k135 | 2014, BSc Informatik (Mono), 135 LPs |
0087d_k90 | 2015, BSc Informatik (Kombi), 90 LPs |
0088d_m60 | 2015, MSc Informatik (Kombi), 60 LPs |
0089b_MA120 | 2008, MSc Informatik (Mono), 120 LPs |
0089c_MA120 | 2014, MSc Informatik (Mono), 120 LPs |
0207b_m37 | 2015, MSc Informatik (Lehramt), 37 LPs |
0208b_m42 | 2015, MSc Informatik (Lehramt), 42 LPs |
0458a_m37 | 2015, MSc Informatik (Lehramt), 37 LPs |
0471a_m42 | 2015, MSc Informatik (Lehramt), 42 LPs |
0556a_m37 | 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs |
0557a_m42 | 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs |
0590a_MA120 | 2019, MSc Data Science, 120 LP |
0590b_MA120 | 2021, MSc Data Science, 120 LP |
Day | Time | Location | Details |
---|---|---|---|
Wednesday | 16-18 | T9/Gr. Hörsaal | 2021-10-20 - 2022-02-16 |
Thursday | 12-14 | A3/Hs 001 Hörsaal | 2021-10-21 - 2022-02-17 |
Day | Time | Location | Details |
---|---|---|---|
Tuesday | 12-14 | T9/SR 005 Übungsraum | Übung 01 |
Tuesday | 14-16 | T9/SR 005 Übungsraum | Übung 02 |