Maschinelles Lernen für Data Science W22/23
to Whiteboard Site

Description

Machine Learning for Data Science

Important information about the course:

Provided at this link.

Final Q&As (via webex)

Q&A 1: Tuesday Jan 31 from 16:15 to 17:45

https://fu-berlin.webex.com/fu-berlin/j.php?MTID=m963d4ddd4c0941df221195f4d6091236

Q&A 2: Thursday Feb 2 from 12:15 to 13:45

https://fu-berlin.webex.com/fu-berlin/j.php?MTID=ma8eb27f16c4520bc9887711719e6a9d8

Q&A 3: Tuesday Feb 7 from 16:15 to 17:45

https://fu-berlin.webex.com/fu-berlin/j.php?MTID=ma2dd3d6414904ddfbd8df1a8e5d40a7a

Course content:

The course provides an overview of machine learning (ML) methods and algorithms for data science. It consists of two parts:

The first part of the course discusses the emergence of big data, presents common ML-based visualization techniques for large datasets, and introduces basic ML methods such as principal component analysis, k-means clustering, linear regression, and linear discriminant.

The second part of the course introduces advanced ML techniques (probabilistic models, kernels, and deep learning) which address the uncertainty of the model and the nonlinearity of real-world data. It also covers the question of reproducibility and explainability of ML models.

By the end of the course, the student has become familiar with common ML models for data science, has understood their theoretical and algorithmic foundations, and has gained experience on how to use these models adequately in practical situations.
 

List of topics:

  • Big data and data science
  • ML-based data visualization
  • Principal components, anomalies, and clustering
  • Correlation analysis, linear regression, and linear discriminant
  • Reproducibility
  • Sequential models
  • Probabilistic models
  • Kernel methods
  • Deep learning
  • Explainable AI
Basic Course Info

Course No Course Type Hours
19330101 Vorlesung 4
19330102 Übung 2

Time Span 18.10.2022 - 28.03.2023
Instructors
Grégoire Montavon
Manuel Heurich

Study Regulation

0086c_k150 2014, BSc Informatik (Mono), 150 LPs
0086d_k135 2014, BSc Informatik (Mono), 135 LPs
0087d_k90 2015, BSc Informatik (Kombi), 90 LPs
0088d_m60 2015, MSc Informatik (Kombi), 60 LPs
0089b_MA120 2008, MSc Informatik (Mono), 120 LPs
0089c_MA120 2014, MSc Informatik (Mono), 120 LPs
0207b_m37 2015, MSc Informatik (Lehramt), 37 LPs
0208b_m42 2015, MSc Informatik (Lehramt), 42 LPs
0458a_m37 2015, MSc Informatik (Lehramt), 37 LPs
0471a_m42 2015, MSc Informatik (Lehramt), 42 LPs
0556a_m37 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs
0557a_m42 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs
0590a_MA120 2019, MSc Data Science, 120 LP
0590b_MA120 2021, MSc Data Science, 120 LP

Maschinelles Lernen für Data Science W22/23
to Whiteboard Site

Main Events

Day Time Location Details
Tuesday 16-18 T9/Gr. Hörsaal 2022-10-18 - 2023-02-14
Thursday 12-14 T9/Gr. Hörsaal 2022-10-20 - 2023-02-09

Maschinelles Lernen für Data Science W22/23
to Whiteboard Site

Most Recent Announcement

:  

Currently there are no public announcements for this course.


Older announcements

Maschinelles Lernen für Data Science W22/23
to Whiteboard Site

Currently there are no resources for this course available.
Or at least none which you're allowed to see with your current set of permissions.
Maybe you have to log in first.