This course will be taught in English. For any questions see me at https://fu-berlin.webex.com/meet/k.wolter on Tuesday, 21.4.2020 between 12 and 1pm.
Operations of the course:
- lectures will be videos, the material is mostly from the book by William Stewart, which you find in the resources. All lecture videos will be posted at: https://fu-berlin.eu.vbrickrev.com/#/media/all. They will all be tagged 'Markov Chains', in the hope that this will allow you to find them.
- tutorials take place on Thursdays 4:14-5:45pm at https://fu-berlin.webex.com/fu-berlin-en/j.php?MTID=mb08d48f61b55e4794dd9142b50a45931 , the meeting number is 398560, password XSnMV42i65e.
- there will be no tutorial on 21.05.2020
Requirements:
- participate in at least 7 tutorials, be able to present your solution to at least half of the assignments in at least 7 tutorials.
- pass the exam at the end of the semester, which may be written, or oral, depending on the corona rules at FUB.
Any questions can be discussed during the tutorials.
Contents summary:
All videos will be uploaded to the zedat service vbrick, I will tag them with the term 'Markov Chains', which will hopefully help you to find them, once vbrick is populated with lots of videos.
Week 1: Introduction (video: https://fu-berlin.eu.vbrickrev.com/sharevideo/851e3540-442f-4dec-abf0-d4e27f009cd7, slides in resources),
Lecture 1:
Probability theory primer part 1 (video: https://fu-berlin.eu.vbrickrev.com/sharevideo/b43523af-d9c8-4d36-9fad-083a7a6e4bc4, lecture notes in resources), or https://nextcloud.imp.fu-berlin.de/index.php/s/FAsA6iZMpSyoHAt
Part 2 (video: https://fu-berlin.eu.vbrickrev.com/sharevideo/6bfcfa9c-8944-4236-93e9-abaca3be2b46, lecture1bAnnotated.pdf are the notes in the resources), or https://nextcloud.imp.fu-berlin.de/index.php/s/XDrEeZdH36rBb6D
Lecture 2: (this is a lot of material, next week it will be less)
Part a: https://fu-berlin.eu.vbrickrev.com/sharevideo/20ac4440-51f2-4e70-9584-489480ed83b6 derived random variables or,https://nextcloud.imp.fu-berlin.de/index.php/s/YrGQxqCEeszeA5J.
Part b: https://fu-berlin.eu.vbrickrev.com/sharevideo/499e9a50-8f5c-44d3-9688-2b1c034dd581, distributions and moments of two random variables, or https://nextcloud.imp.fu-berlin.de/index.php/s/9bWS7gXXdGH2QPS
Part c: https://fu-berlin.eu.vbrickrev.com/sharevideo/dc0f842f-9606-4d0f-80ad-9d9f11725d8d, distribution of minima and maxima of several random variables, or https://nextcloud.imp.fu-berlin.de/index.php/s/ny6TT3p2D4MKACb
Week 2:
Lecture 3:
Part a: https://fu-berlin.eu.vbrickrev.com/sharevideo/1d2133bb-ca5d-42c7-8427-c9e52dde7508 discrete probability distributions. https://nextcloud.imp.fu-berlin.de/index.php/s/64sgW86tXtft5pM
Lecture 4:
Part a: continuous probability distributions, reliability https://fu-berlin.eu.vbrickrev.com/sharevideo/76842793-36f8-46b1-a1a3-ac5cb5211056 or https://nextcloud.imp.fu-berlin.de/index.php/s/Nt27eKeZTTHWfZY
Part b: Phase-type distributions https://fu-berlin.eu.vbrickrev.com/sharevideo/7654dbd2-25a8-4d61-b9d3-7afc4b361ea7 or https://nextcloud.imp.fu-berlin.de/index.php/s/d5g78B96Qp5No9R
Week 3:
Lecture 5:
Bounds and limit theorems: https://fu-berlin.eu.vbrickrev.com/sharevideo/8b37bbfd-993c-4d6d-90a7-31d5cd534583 or https://nextcloud.imp.fu-berlin.de/index.php/s/ofyrtwTQ7g6MLn4
Week 4:
Lecture 6: Discrete time Markov chains https://fu-berlin.eu.vbrickrev.com/sharevideo/491d7c88-4eb9-43ce-ac5a-0c465bc67cc5 or https://nextcloud.imp.fu-berlin.de/index.php/s/27LR85BS29A32tJ
Lecture 7: DTMCs, Sojourn times and embedded MCs https://fu-berlin.eu.vbrickrev.com/sharevideo/305636f9-7698-4994-b91e-cf5b238d9331 or https://nextcloud.imp.fu-berlin.de/index.php/s/w4k7dTT3qgzfczg
Week 5:
Lecture 8: DTMCs Classification of states https://fu-berlin.eu.vbrickrev.com/sharevideo/a74301da-bb72-4781-8bd7-076b60987e0f or https://nextcloud.imp.fu-berlin.de/index.php/s/EK8S8ySTB4P8twi
Lecture 9: DTMCs, Irreducibility, Potential and Fundamental matrix https://fu-berlin.eu.vbrickrev.com/sharevideo/fafba7ad-2061-4794-a743-387568f8620f or https://nextcloud.imp.fu-berlin.de/index.php/s/sDd7xzxHMAPoWQp
Week 6
Lecture 10: Random Walk https://fu-berlin.eu.vbrickrev.com/sharevideo/080d549b-5b74-449a-90a6-a7aa4c9a1a23 or https://nextcloud.imp.fu-berlin.de/index.php/s/MEDn5Xa7zB9ZSkJ
Lecture 11: Limiting and stationary distributions https://fu-berlin.eu.vbrickrev.com/sharevideo/4ca5c416-0719-4f42-b03a-280b0bdc9f03 or https://nextcloud.imp.fu-berlin.de/index.php/s/9nqJ8PdEQKr7mwi
Lecture 12: Reversibility https://fu-berlin.eu.vbrickrev.com/sharevideo/b81bcc98-97ad-4b8e-bc3f-d4d124e55603 or https://nextcloud.imp.fu-berlin.de/index.php/s/KjE5LQRsLb62fF3
Lecture 13: Page rank https://fu-berlin.eu.vbrickrev.com/sharevideo/e65fb743-fcfd-4f27-9098-f2624556993f or https://nextcloud.imp.fu-berlin.de/index.php/s/5FrkEn7WbsyG5BK
Week 7
Lecture 14: CTMCs https://fu-berlin.eu.vbrickrev.com/sharevideo/f4e314ae-26fe-47e0-b841-69c97b2ad23f or https://nextcloud.imp.fu-berlin.de/index.php/s/TJWyDYm64SeMsTf
Week 8
Lecture 15: Renewal processes, PP, uniformisation, stochastic Petri nets https://fu-berlin.eu.vbrickrev.com/sharevideo/6d1cbc1b-9c6c-4791-a6e8-f91454b4e4e0 or https://nextcloud.imp.fu-berlin.de/index.php/s/n83bq9jyXcFAkcK
Lecture 16:
Petri net tool PIPE2: https://fu-berlin.eu.vbrickrev.com/sharevideo/6ee2f5c1-4714-4bce-be27-2fe798cb5e03 or https://nextcloud.imp.fu-berlin.de/index.php/s/Ri7wFbiEsF5Fedm
Lecture 17: Basic queueing theory https://fu-berlin.eu.vbrickrev.com/sharevideo/bb1a2e24-6f6a-4497-82be-28a3d5d101ed or https://nextcloud.imp.fu-berlin.de/index.php/s/KWAKz62miegR5m4
Week 9
Lecture 18: Basic queueing theory (Part 2) https://fu-berlin.eu.vbrickrev.com/sharevideo/dacb3026-0717-40e6-96e3-12c6f7aa4e37 https://nextcloud.imp.fu-berlin.de/index.php/s/RqNi3kjSqBb9BN5
Lecture 19: The M/M/1 queue https://fu-berlin.eu.vbrickrev.com/sharevideo/0a5911f9-0358-41e1-976b-d74e46a99525 or https://nextcloud.imp.fu-berlin.de/index.php/s/8ZgN3NHRjHRnf9k
Week 10:
Lecture 20: The M/M/m queue https://fu-berlin.eu.vbrickrev.com/sharevideo/a0b7ef7b-19ec-4997-a8d3-5e5a06ce114c or https://nextcloud.imp.fu-berlin.de/index.php/s/NSCAF924786HH8L
Lecture 21: The M/M/m/K queue https://fu-berlin.eu.vbrickrev.com/sharevideo/c7495d8e-6c26-4c81-823c-08cc8aa8f799 or https://nextcloud.imp.fu-berlin.de/index.php/s/fpMwgD7qYnQQjcW
Week 11:
Lecture 22: The M/G/1 queue https://fu-berlin.eu.vbrickrev.com/sharevideo/4a625125-ec14-40a2-9c59-b216c06b0e39 or https://nextcloud.imp.fu-berlin.de/index.php/s/qGPo3NYj3Gj6rTJ
Lecture 23: Queueing networks https://fu-berlin.eu.vbrickrev.com/sharevideo/c0722e9e-6cef-43e4-8021-e9dd1fd50cc8 or https://nextcloud.imp.fu-berlin.de/index.php/s/q2gWwE9PAbZFYig
Dieser Kurs wird auf englisch gehalten.
Wir beschäftigen uns mit den grundlegenden stochastischen Modellen, die zur Untersuchung der Leistung von Computersystemen häufig benutzt werden. Markov modelle und Warteschlangen werden gerne für die Untersuchung dynamischer Systeme verwendet, z.B. Computer Hardware, Kommunicationsprotokolle, biologische Systeme, Epidemien, Verkehr und digitale Währungen. Wir werden uns einen raschen Überblick verschaffen. Betrachtete Themen sind der Geburts- und Todesprozess, der Poissonprozess, verallgemeinerte Markov und semi-Markov prozesse sowie deren Lösungsmethoden. Soweit die Zeit es erlaubt werden wir auch die Hintergründe der diskreten Ereignissimulation ansehen.
William Stewart. Probability, Markov Chains, Queues and Simulation. Princeton University Press 2009.
Course No | Course Type | Hours |
---|---|---|
19326601 | Vorlesung | 4 |
19326602 | Übung | 2 |
Time Span | 23.04.2020 - 26.10.2020 |
---|---|
Instructors |
Katinka Wolter
|
0086c_k150 | 2014, BSc Informatik (Mono), 150 LPs |
0086d_k135 | 2014, BSc Informatik (Mono), 135 LPs |
0087d_k90 | 2015, BSc Informatik (Kombi), 90 LPs |
0088d_m60 | 2015, MSc Informatik (Kombi), 60 LPs |
0089b_MA120 | 2008, MSc Informatik (Mono), 120 LPs |
0089c_MA120 | 2014, MSc Informatik (Mono), 120 LPs |
0207b_m37 | 2015, MSc Informatik (Lehramt), 37 LPs |
0208b_m42 | 2015, MSc Informatik (Lehramt), 42 LPs |
0458a_m37 | 2015, MSc Informatik (Lehramt), 37 LPs |
0471a_m42 | 2015, MSc Informatik (Lehramt), 42 LPs |
0556a_m37 | 2018, M-Ed Fach 1 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 37 LPs |
0557a_m42 | 2018, M-Ed Fach 2 Informatik (Lehramt an Integrierten Sekundarschulen und Gymnasien), 42 LPs |
0590a_MA120 | 2019, MSc Data Science, 120 LP |
Day | Time | Location | Details |
---|---|---|---|
Tuesday | 12-14 | T9/049 Seminarraum | 2020-04-28 - 2020-07-14 |
Thursday | 14-16 | T9/K46 Rechnerpoolraum | 2020-04-23 - 2020-07-16 |
Thursday | 16-18 | T9/Gr. Hörsaal | 2020-04-23 - 2020-07-16 |