Hauptinhalt dieses Moduls ist das Erlernen von Arbeitsmethoden. Es werden 1-3 Probleme von disziplinübergreifender Relevanz ausgewählt, und an diesen Beispielen naturwissenschaftliche Theorie, Algorithmik, Numerik und Effizienz durchexerziert. In den Computerübungen werden Implementierungen der entsprechenden Probleme in Teamarbeit entwickelt, getestet und optimiert. Beispiele für geeignete Probleme sind u.a.:
-
Schwingungsphänomene und Spektralanalyseverfahren: Wellen und Schwingungen in der Physik, Fourier- und Laplacetransformation, Diskretisierung, DFT, FFT, Implementierung, Stabilitätsanalyse, Laufzeitanalyse, Code-Optimierung, Hardwarebeschleunigung.
-
Gravitation, Elektrostatik und Berechnungsverfahren: Gravitationsproblem und Coulomb-Gesetz, Periodische Systeme und Konvergenz, Ewald-Summierung, Fehleranalyse, Particle-Mesh-Ewald, Effiziente Implementierung, Hardwarebeschleunigung.
-
Wärmeleitungsgleichung, Poissongleichung und Lösungsverfahren: Wärmeleitungsgleichung, Poissongleichung, parabolische PDEs, PDE, Analytische Lösungen für Spezialfälle, Gebietszerlegung / Finite- Elemente Approximation, Lösung mit algebraischen Methoden, Implementierung, Konvergenzanalyse, Code- Optimierung, Hardwarebeschleunigung.
-
Datenanalyse und Dimensionsreduktion: Beispiele korrelierter, hochdimensionaler Signale, Hauptkomponentenanalyse, Rayleigh-Koeffizient und Optimalitätsprinzip, Eigenwertproblem, Singulärwertzerlegung und herkömmliche Lösungsverfahren, Nyström-Approximation und sparse sampling, effiziente Implementierung.