Inhalt:
- Grundbegriffe: Mengen, Abbildungen, Äquivalenzrelationen, Gruppen, Ringe, Körper
- Lineare Gleichungssysteme: Lösbarkeitskriterien, Gauß-Algorithmus
- Vektorräume: Lineare Unabhängigkeit, Erzeugendensysteme und Basen, Dimension, Unterräume, Faktorräume, Vektorprodukt im R3
- Lineare Abbildungen: Bild und Rang, Zusammenhang mit Matrizen, Verhalten bei Basiswechsel
- Dualer Vektorraum: Multilinearformen, alternierende und symmetrische Bilinearformen, Zusammenhang mit Matrizen, Basiswechsel
- Determinanten: Cramersche Regel, Eigenwerte und -vektoren
Voraussetzungen:
Der Brückenkurs Mathematik ist zum Einstieg sehr zu empfehlen!
Literatur
Wird in der Vorlesung genannt!