Bitte um Beachtung:
Aufgrund der bundesweiten Klimastreikwoche an den Hochschulen vom 25.-29.11.2019 wird die Vorlesung am Dienstag, 26.11.2019 im Hörsaal A in der Arnimallee 22 gehalten. Diese Veranstaltung ist Teil der „ Public Climate School“, im Rahmen dieser öffentliche Veranstaltungen rund um die Klimakrise stattfinden.
Die Reservierung des Hörsaals ist bestätigt.
Please note:
Due to the nationwide climate strike week at the universities from 25 to 29 November 2019, the lecture of Tuesday, 26 November 2019 will be held in Hörsaal A, Arnimallee 22. This event is part of the "Public Climate School". Public events on the climate crisis will take place within this framework.
The reservation of the lecture hall has been confirmed.
Ulrike Eickers
Inhalt:
Die Mathematik spielt eine zentrale Rolle bei der Entwicklung und Analyse von Modellen zur Wettervorhersage. Kontrollierte physikalische Experimente kommen nicht in Frage, und die einzige Möglichkeit, das Wetter- und Klimasystem der Erde zu untersuchen, sind mathematische Modelle, Computerexperimente und Datenanalysen.
Schwankungen im täglichen Wetter sind eng mit Turbulenzen verbunden, und Turbulenzen stellen eine Herausforderung für die Vorhersagbarkeit des Wetters dar. Es ist keine generelle Lösung für die Gleichungen der Fluidbewegung bekannt, und folglich gibt es auch keine generelle Lösung für Probleme in turbulenten Strömungen. Stattdessen verlassen sich die Wissenschaftler auf konzeptionelle Modelle und statistische Beschreibungen, um die Essenz des täglichen Wetters zu verstehen und zu verstehen, wie sich dies auf das Klimaverhalten auswirkt.
Dieser Kurs/Seminar konzentriert sich auf Techniken der mathematischen Modellierung, die Wissenschaftler dabei unterstützen, die aufgeführten Themen systematisch zu erforschen.
Der Kurs umfasst eine Auswahl aus folgenden Themenbereichen
1. Erhaltungsssätze und deren mathematischer Ausdruck in Form von partiellen Differentialgleichungen
2. Numerische Methoden für geophysikalische Strömungssimulationen
3. Meteorologische Skalenanalyse und asymptotische Analysis
4. Datenbasierte Charakterisierung atmosphärischer Strömungen
Literatur
Literaturhinweise werden anfangs des Semesters in Abhängigkeit von der Themenauswahl gegeben. Interessante Startpunkte, die einen ersten Einstieg in obige drei Hauptpunkte erlauben, sind Klein R., Scale-Dependent Asymptotic Models for Atmospheric Flows, Ann. Rev. Fluid Mech., vol. 42, 249-274 (2010) D. Durran, Numerical Methods for Fluid Dynamics with Applications to Geophysics, Springer, Computational Science and Engineering Series, (2010) Metzner Ph., Putzig L., Horenko I., Analysis of persistent nonstationary time series and applications Comm. Appl. Math. & Comput. Sci., vol. 7, 175-229 (2012)
Tennekes and Lumley, A first course in Turbulence, MIT Press (1974)
----------------------------------------------------------------------------------------
Materials