Ziel der VL ist es ein grundlegendes Verständnis von KI-Systemen/Algorithmen mit Datenschutz.
(English) Outline (tentative):
1. Data bases: Nomenclature, data representations, queries and statistics, attacks
2. DeepL I: Topology, universality, stochastic gradient
3. DeepL II: Generative modeling, variational inference, VAE, ELBOW
4. DeepL III: GAN architecture, metrics, convergence
5. DeepL IV: Variational autoencoder famility, information bottleneck, dual formulation, limits and tradeoffs
6. Diff. Privacy I: Definitionen, Gaussian DP, DP as hyphothesis tests
7. Diff. Privacy II: Mechanisms (Gaussian and Laplace), compositions
8. Diff. Privacy III: Performance limits und tradeoffs
9. DeepL mit Diff.Privacy I: DP-SGD
10. DeepL mit Diff.Privacy II: PATE
11. Synthetic Data I
12. Synthetic Data II
13. Robustheit/Certification I
14. Robustheit/Certification II
15. Applications I: Biometrics
16. Applications II: tba