Content:
-
Basic terms/concepts: sets, maps, equivalence relations, groups, rings,
- fields
- Linear equation systems: solvability criteria, Gauss algorithm
- Vector spaces: linear independence, generating systems and bases, dimension,
- subspaces, quotient spaces, cross products in R3
- Linear maps: image and rank, relationship to matrices, behaviour under
- change of basis
- Dual vector spaces: multilinear forms, alternating and symmetric bilinear
- forms, relationship to matices, change of basis
- Determinants: Cramer's rule, Eigenvalues and Eigenvectors
Prerequisites:
Participation in the preparatory course (Brückenkurs) is highly recommended.
Website: http://userpage.fu-berlin.de/~aschmitt/LAI21.html