Linear equation systems: solvability criteria, Gauss algorithm
Vector spaces: linear independence, generating systems and bases, dimension,
subspaces, quotient spaces, cross products in R3
Linear maps: image and rank, relationship to matrices, behaviour under
change of basis
Dual vector spaces: multilinear forms, alternating and symmetric bilinear
forms, relationship to matices, change of basis
Determinants: Cramer's rule, Eigenvalues and Eigenvectors
Prerequisites:
Participation in the preparatory course (Brückenkurs) is highly recommended.
References
Literatur:
Siegfried Bosch, Lineare Algebra, 4. Auflage, Springer-Verlag, 2008;
Tammo tom Dieck, Lineare Algebra, Skript, Universität Göttingen Version vom 7.10.2014
Additional appointments
Klausur
Hs 2 Hörsaal
AlexandruConstantinescu
13.02.2019 08:00 - 10:00
Nachklausur
Hs 2 Hörsaal
AlexandruConstantinescu
26.03.2019 10:00 - 12:00
Appointment series
A3/Hs 001 Hörsaal
AlexandruConstantinescu
wöchentlich, ab 15.10.2018, 08:00 - 10:00 (16 Termine)
A3/Hs 001 Hörsaal
AlexandruConstantinescu
wöchentlich, ab 17.10.2018, 08:00 - 10:00 (15 Termine)