192
Teilnahmepflicht

Wenn eine Veranstaltungsinstanz aus einer Schablone erstellt wird, befindet sie sich in diesem Zustand.

  • Die Daten sind in der Regel noch nicht vollständig und es kann noch alles bearbeitet werden.
  • Dozenten und Sekretariate können den Zuständ auf Bearbeitet setzen.

High-Dimensional Probability with Applications to Data Science

Data sciences play an increasingly prominent role in modern society and are developing quickly. Probabilistic methods often provide foundation and inspiration for such developments. Particularly in the much-discussed regime of "big data", the methods draw upon the elegant mathematics of high- and infinite-dimensional probability. Building upon the probability and linear algebra from basic undergraduate courses, this course will cover the key probabilistic methods and results that form an essential toolbox for a mathematical data scientist.

We will follow the draft lecture notes of Roman Vershynin, "High-Dimensional Probability: An Introduction with Applications in Data Science", 2017, which can be found on the internet. The seminar meetings will summarise sections of the lecture notes. Students taking the course for credit will be required to present one or more sections in class (minimum of one, with additional credit for multiple presentations).

Topics:

  • Preliminaries on random variables
  • Concentration of sums of independent random variables
  • Random vectors in high dimensions
  • Sub-Gaussian random matrices
  • Concentration without independence
  • Quadratic forms, symmetrisation, and contraction
  • Random processes
  • Chaining
  • Deviations of random matrices and geometric consequences
  • Sparse recovery and compressed sensing

For Summer Semester 2018 the UQ Seminar will focus on theory and methods for forward and inverse quantification of uncertainty in spatial statistical problems.  We will consider methods such as Gaussian process regression and Kriging, reproducing kernel Hilbert spaces, parametric and non-parametric inverse problems, and approximate inference techniques such as Markov chain Monte Carlo, filters, smoothers, and transport maps.

Sprachübergreifend

Werdende Mütter

Keine Gefährdungen vorliegend
Teilweise Gefährdungen vorliegend
Alternative Lehrveranstaltung
Gefährdungen vorliegend

Stillende Mütter

Keine Gefährdungen vorliegend
Teilweise Gefährdungen vorliegend
Alternative Lehrveranstaltung
Gefährdungen vorliegend