Vergleiche

Unterschiede

a.SAP verarbeitet Basismodul: Numerik II ( 19202101 )

Feld Evento
Textunterschiede
Lehrplanung Operationen
Englische Beschreibung <p><strong>Description: </strong>Extending basic knowledge on odes from Numerik I, we first concentrate on one-step methods for stiff and differential-algebraic systems and then discuss Hamiltonian systems. In the second part of the lecture we consider the iterative solution of large linear systems.</p> <p><strong>Target Audience: </strong>Students of Bachelor and Master courses in Mathematics and of BMS</p> <p><strong>Prerequisites: </strong>Basics of calculus (Analysis I, II) linear algebra (Lineare Algebra I, II) and numerical analysis (Numerik I)</p> <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><a href="http://numerik.mi.fu-berlin.de/wiki/WS_2019/NumericsII.php" style="color:blue; text-decoration:underline">Webseite: http://numerik.mi.fu-berlin.de/wiki/WS_2019/NumericsII.php</a></span></span></p> <p><strong>Description: </strong>Extending basic knowledge on odes from Numerik I, we first concentrate on one-step methods for stiff and differential-algebraic systems and then discuss Hamiltonian systems. In the second part of the lecture we consider the iterative solution of large linear systems.</p> <p><strong>Target Audience: </strong>Students of Bachelor and Master courses in Mathematics and of BMS</p> <p><strong>Prerequisites: </strong>Basics of calculus (Analysis I, II) linear algebra (Lineare Algebra I, II) and numerical analysis (Numerik I)</p> <p><span><span><a href="http://numerik.mi.fu-berlin.de/wiki/WS_2019/NumericsII.php">Webseite: http://numerik.mi.fu-berlin.de/wiki/WS_2019/NumericsII.php</a></span></span></p> <p> </p> <p><strong>Description: </strong>Extending basic knowledge on odes from Numerik I, we first concentrate on one-step methods for stiff and differential-algebraic systems and then discuss Hamiltonian systems. In the second part of the lecture we consider the iterative solution of large linear systems.</p> <p><strong>Target Audience: </strong>Students of Bachelor and Master courses in Mathematics and of BMS</p> <p><strong>Prerequisites: </strong>Basics of calculus (Analysis I, II) linear algebra (Lineare Algebra I, II) and numerical analysis (Numerik I)</p> <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><a href="http://numerik.mi.fu-berlin.de/wiki/WS_2019/NumericsII.php" style="color:blue; text-decoration:underline">Webseite: http://numerik.mi.fu-berlin.de/wiki/WS_2019/NumericsII.php</a></span></span></p> <p>&nbsp;</p>

a.SAP verarbeitet Computational Sciences ( 19202301 )

Feld Evento
Textunterschiede
Lehrplanung Operationen
Englische Beschreibung <div class="page" title="Page 12"> <div class="section"> <div class="layoutArea"> <div class="column"> <p><span style="font-family:arialmt; font-size:9.000000pt">The main focus of the module is on learning working methods. 1-3 problems of interdisciplinary relevance are selected and scientific theory, algorithmics, numerics and efficiency are rigorously practiced on these examples. In the computer exercises, students work in teams to develop, test and optimize implementations of the problems. Examples of suitable problems are e.g.: </span></p> <ul style="list-style-type:disc"> <li> <p><em>Wave phenomena and spectral analysis methods: </em><span style="font-family:arialmt; font-size:9.000000pt">Waves and oscillations in physics, the Fourier and Laplace transforms, discretization, DFT, FFT, implementation, stability analysis, duration analysis, code optimization, hardware acceleration </span></p> </li> <li> <p><em>Gravitation, electrostatics and computational procedures: </em><span style="font-family:arialmt; font-size:9.000000pt">gravitation problems and Coulomb&lsquo;s law, periodic systems and convergence, Ewald summation, error analysis, Particle Mesh Ewald, efficient implementation, hardware acceleration </span></p> </li> <li> <p><em>Thermal conductivity equation, Poisson&rsquo;s equation and solution methods: </em><span style="font-family:arialmt; font-size:9.000000pt">thermal conductivity equation, Poisson&rsquo;s equation, parabolic PDEs, PDEs, analytical solutions for special cases, domain decomposition / finite element approximation, solution using algebraic methods, implementation, convergence analysis, code optimization, hardware acceleration </span></p> </li> <li> <p><em>Data analysis and dimensional reduction: </em><span style="font-family:arialmt; font-size:9.000000pt">examples of correlated high-dimensional signals, Rayleigh quotient and optimality principle, eigenvalue problem, singular value decomposition and usual solution methods, Nystro¨m approximation and sparse sampling, efficient implementation</span></p> </li> </ul> </div> </div> </div> </div> <div class="page" title="Page 12"> <div class="section"> <div class="layoutArea"> <div class="column"> <p><span>The main focus of the module is on learning working methods. 1-3 problems of interdisciplinary relevance are selected and scientific theory, algorithmics, numerics and efficiency are rigorously practiced on these examples. In the computer exercises, students work in teams to develop, test and optimize implementations of the problems. Examples of suitable problems are e.g.: </span></p> <ul> <li> <p><em>Wave phenomena and spectral analysis methods: </em><span>Waves and oscillations in physics, the Fourier and Laplace transforms, discretization, DFT, FFT, implementation, stability analysis, duration analysis, code optimization, hardware acceleration </span></p> </li> <li> <p><em>Gravitation, electrostatics and computational procedures: </em><span>gravitation problems and Coulomb‘s law, periodic systems and convergence, Ewald summation, error analysis, Particle Mesh Ewald, efficient implementation, hardware acceleration </span></p> </li> <li> <p><em>Thermal conductivity equation, Poisson’s equation and solution methods: </em><span>thermal conductivity equation, Poisson’s equation, parabolic PDEs, PDEs, analytical solutions for special cases, domain decomposition / finite element approximation, solution using algebraic methods, implementation, convergence analysis, code optimization, hardware acceleration </span></p> </li> <li> <p><em>Data analysis and dimensional reduction: </em><span>examples of correlated high-dimensional signals, Rayleigh quotient and optimality principle, eigenvalue problem, singular value decomposition and usual solution methods, Nystro¨̈m approximation and sparse sampling, efficient implementation</span></p> </li> </ul> </div> </div> </div> </div> <div class="page" title="Page 12"> <div class="section"> <div class="layoutArea"> <div class="column"> <p><span style="font-family:arialmt; font-size:9.000000pt">The main focus of the module is on learning working methods. 1-3 problems of interdisciplinary relevance are selected and scientific theory, algorithmics, numerics and efficiency are rigorously practiced on these examples. In the computer exercises, students work in teams to develop, test and optimize implementations of the problems. Examples of suitable problems are e.g.: </span></p> <ul style="list-style-type:disc"> <li> <p><em>Wave phenomena and spectral analysis methods: </em><span style="font-family:arialmt; font-size:9.000000pt">Waves and oscillations in physics, the Fourier and Laplace transforms, discretization, DFT, FFT, implementation, stability analysis, duration analysis, code optimization, hardware acceleration </span></p> </li> <li> <p><em>Gravitation, electrostatics and computational procedures: </em><span style="font-family:arialmt; font-size:9.000000pt">gravitation problems and Coulomb&lsquo;s law, periodic systems and convergence, Ewald summation, error analysis, Particle Mesh Ewald, efficient implementation, hardware acceleration </span></p> </li> <li> <p><em>Thermal conductivity equation, Poisson&rsquo;s equation and solution methods: </em><span style="font-family:arialmt; font-size:9.000000pt">thermal conductivity equation, Poisson&rsquo;s equation, parabolic PDEs, PDEs, analytical solutions for special cases, domain decomposition / finite element approximation, solution using algebraic methods, implementation, convergence analysis, code optimization, hardware acceleration </span></p> </li> <li> <p><em>Data analysis and dimensional reduction: </em><span style="font-family:arialmt; font-size:9.000000pt">examples of correlated high-dimensional signals, Rayleigh quotient and optimality principle, eigenvalue problem, singular value decomposition and usual solution methods, Nyström approximation and sparse sampling, efficient implementation</span></p> </li> </ul> </div> </div> </div> </div>
Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Hermann Georg Thiel

Evento: eVV-Textfeld "Leitung (Publikation)" Evento: Dozierende (29 Lektionen) Lehrplanung
Dozierende in eVV
Hermann Georg Thiel
-
Hermann Georg Thiel

a.SAP verarbeitet Analysis I ( 19202801 )

Feld Evento Lehrplanung Operationen
Submodul

0082aA1.1.1

0082fA1.4.1

0084aA1.1.1

0084cA1.1.1

0084dA1.1.1

0426aA1.5.1

-

0426bA1.7.1

0513bA2.1.1

0521aA7.1.1

0082aA.1.1.1

0082fA.1.4.1

0084aA.1.1.1

0084cA.1.1.1

0084dA.1.1.1

0426aA.1.5.1

0426bA.1.6.1

-

0513bA.2.1.1

0521aA.7.1.1

a.SAP verarbeitet Berufspraktikum Mathematik ( 19203533 )

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Ralf Kornhuber

a.SAP verarbeitet Teil-Modul Mathematisches Vertiefungsgebiet ( 19204001 )

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Christian Haase

a.SAP verarbeitet Proseminar/Seminar zur Analysis ( 19200910 )

Feld Evento Lehrplanung Operationen
Kapazität 20 15

a.SAP verarbeitet Analysis III ( 19201301 )

Feld Evento Lehrplanung Operationen
Kapazität 0 120

a.SAP verarbeitet Lineare Algebra I ( 19201401 )

Feld Evento Lehrplanung Operationen
Submodul

0082aA1.3.1

0082fA1.5.1

0084aA2.1.1

0084cA1.4.1

0084dA1.4.1

0426aA1.5.1

-

0426bA1.7.1

0513bA2.1.1

0521aA7.3.1

0082aA.1.3.1

0082fA.1.5.1

0084aA.2.1.1

0084cA.1.4.1

0084dA.1.4.1

0426aA.1.5.1

0426bA.1.6.1

-

0513bA.2.1.1

0521aA.7.3.1

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Konrad Polthier

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Felix Höfling

a.SAP verarbeitet Seminar zur Diskreten Geometrie ( 19216911 )

Feld Evento
Textunterschiede
Lehrplanung Operationen
Englische Beschreibung <div style="color:#000000; font-family:Helvetica; font-size:12px"> <p>The main theme of the seminar will be shellability of simplicial complexes.</p> <p>Shellability is a fundamental property of polytopes and of some simplicial complexes that allows to construct these combinatorial objects by tidily gluing together their maximal faces.<br /> Bruggesser and Mani (1970) proved that the boundary complex of every simplicial polytope is shellable. This fact was then used to prove the Euler-Poincare´ formula, which says that the alternating sum of the number f_i of i-dimensional faces of a convex polytope is zero. This is an extension of the well- known Euler formula for 3-polytopes: v-e+f=2, where v, e and f are the number of vertices, edges and maximal faces of the polytope.</p> <p>From the f-vector, whose components are the numbers f_i, one can compute another vector, called h-vector, whose components count the number of certain facets in a shellable simplicial complex. The components of the h-vector of the boundary of a simplicial polytope are symmetric (they satisfy the Dehn-Sommerville equations).</p> <p>Another crucial application of shellability is the Upper Bound Theorem, proved by McMullen in 1970, which states that the maximal number of k-faces for a d-polytope with n vertices is attained by the cyclic polytope.<br /> In the setting of simplicial complexes, shellability is a strong property in the hierarchy of pure complexes: vertex-decomposable => shellable => constructible => Cohen-Macaulay, and each of these classes of simplicial complexes is interesting by its own.</p> <p>Reisner (1976) gave a beautiful topological characterization of Cohen-Macaulay complexes in terms of the homology of the links of their faces. This was the starting point of the Stanley-Reisner theory that connects simplicial complexes to monomial ideals.<br /> Shellability, unlike Cohen-Macaulayness, is independent of the field. However, there are interesting examples of complexes that are Cohen-Macaulay over every field, but are not shellable.</p> <p>Moreover, even if shellability is a combinatorial property, it depends on the triangulation of the complex: there exist, for example, non-shellable triangulations of the 3-ball and of the 3-sphere.</p> </div> <div> <p>The main theme of the seminar will be shellability of simplicial complexes.</p> <p>Shellability is a fundamental property of polytopes and of some simplicial complexes that allows to construct these combinatorial objects by tidily gluing together their maximal faces.<br> Bruggesser and Mani (1970) proved that the boundary complex of every simplicial polytope is shellable. This fact was then used to prove the Euler-Poincare´́ formula, which says that the alternating sum of the number f_i of i-dimensional faces of a convex polytope is zero. This is an extension of the well- known Euler formula for 3-polytopes: v-e+f=2, where v, e and f are the number of vertices, edges and maximal faces of the polytope.</p> <p>From the f-vector, whose components are the numbers f_i, one can compute another vector, called h-vector, whose components count the number of certain facets in a shellable simplicial complex. The components of the h-vector of the boundary of a simplicial polytope are symmetric (they satisfy the Dehn-Sommerville equations).</p> <p>Another crucial application of shellability is the Upper Bound Theorem, proved by McMullen in 1970, which states that the maximal number of k-faces for a d-polytope with n vertices is attained by the cyclic polytope.<br> In the setting of simplicial complexes, shellability is a strong property in the hierarchy of pure complexes: vertex-decomposable => shellable => constructible => Cohen-Macaulay, and each of these classes of simplicial complexes is interesting by its own.</p> <p>Reisner (1976) gave a beautiful topological characterization of Cohen-Macaulay complexes in terms of the homology of the links of their faces. This was the starting point of the Stanley-Reisner theory that connects simplicial complexes to monomial ideals.<br> Shellability, unlike Cohen-Macaulayness, is independent of the field. However, there are interesting examples of complexes that are Cohen-Macaulay over every field, but are not shellable.</p> <p>Moreover, even if shellability is a combinatorial property, it depends on the triangulation of the complex: there exist, for example, non-shellable triangulations of the 3-ball and of the 3-sphere.</p> </div> <div style="color:#000000; font-family:Helvetica; font-size:12px"> <p>The main theme of the seminar will be shellability of simplicial complexes.</p> <p>Shellability is a fundamental property of polytopes and of some simplicial complexes that allows to construct these combinatorial objects by tidily gluing together their maximal faces.<br /> Bruggesser and Mani (1970) proved that the boundary complex of every simplicial polytope is shellable. This fact was then used to prove the Euler-Poincaré formula, which says that the alternating sum of the number f_i of i-dimensional faces of a convex polytope is zero. This is an extension of the well- known Euler formula for 3-polytopes: v-e+f=2, where v, e and f are the number of vertices, edges and maximal faces of the polytope.</p> <p>From the f-vector, whose components are the numbers f_i, one can compute another vector, called h-vector, whose components count the number of certain facets in a shellable simplicial complex. The components of the h-vector of the boundary of a simplicial polytope are symmetric (they satisfy the Dehn-Sommerville equations).</p> <p>Another crucial application of shellability is the Upper Bound Theorem, proved by McMullen in 1970, which states that the maximal number of k-faces for a d-polytope with n vertices is attained by the cyclic polytope.<br /> In the setting of simplicial complexes, shellability is a strong property in the hierarchy of pure complexes: vertex-decomposable =&gt; shellable =&gt; constructible =&gt; Cohen-Macaulay, and each of these classes of simplicial complexes is interesting by its own.</p> <p>Reisner (1976) gave a beautiful topological characterization of Cohen-Macaulay complexes in terms of the homology of the links of their faces. This was the starting point of the Stanley-Reisner theory that connects simplicial complexes to monomial ideals.<br /> Shellability, unlike Cohen-Macaulayness, is independent of the field. However, there are interesting examples of complexes that are Cohen-Macaulay over every field, but are not shellable.</p> <p>Moreover, even if shellability is a combinatorial property, it depends on the triangulation of the complex: there exist, for example, non-shellable triangulations of the 3-ball and of the 3-sphere.</p> </div>
Englische zusätzliche Informationen <p>Das Seminar findet zeitlich&nbsp;in Absprache mit den Teilnehmern statt.</p>
<p>Das Seminar findet zeitlich in Absprache mit den Teilnehmern statt.</p>
Kein Eintrag
Feld Evento
Textunterschiede
Lehrplanung Operationen
Englische Beschreibung See German description. S<p>On Monday, 14.10.2019, at 9.15 a.m., we will have an welcome session (in German) for new students in the <em>main auditorium of the department of Computer Science</em>. After a common introduction, the participants will split into groups according to their course of study (BSc Computer Science in SR 055, MSc Computer Science in SR 006). We will provide an overview of the curriculum and give your relevant information about your study program. Furthermore, the Mentoring Program will be presented.</p> <p><strong>Target audience</strong>: first semester students at the department of Computer Science</p> <p>On Monday, 14.10.2019, at 9.15 a.m., we will have an welcome session (in German) for new students in the&nbsp;<em>main auditorium of the department of Computer Science</em>. After a common introduction, the participants will split into groups according to their course of study (BSc Computer Science in SR 055, MSc Computer Science in SR 006). We will provide an overview of the curriculum and give your relevant information about your study program. Furthermore, the Mentoring Program will be presented.</p> <p><strong>Target audience</strong>: first semester students at the department of Computer Science</p>
Evento: eVV-Textfeld "Leitung (Publikation)" Evento: Dozierende (2 Lektionen) Lehrplanung
Dozierende in eVV
-
Rupert Klein
Ulrike Seyferth
Rupert Klein
Ulrike Seyferth
Rupert Klein
Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Holger Reich

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Ralf Kornhuber

a.Publiziert Forschungsseminar Diskrete Biomathematik ( 19210616 )

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Heike Siebert

a.Publiziert Forschungsseminar Diskrete Geometrie ( 19210716 )

Feld Evento
Textunterschiede
Lehrplanung Operationen
Englische zusätzliche Informationen <p>The event takes place every Thursday, 14-16&nbsp;in SR 001, Arnimallee 2.</p>
<p>The event takes place every Thursday, 14-16 in SR 001, Arnimallee 2.</p>
Kein Eintrag
Dozent Kein Eintrag

Matthias Beck

Rainer Sinn

a.SAP verarbeitet Grundlagen der Fachdidaktik Mathematik 1 ( 19224711 )

Feld Evento Lehrplanung Operationen
Dozent

Benedikt Weygandt

Kein Eintrag

a.SAP verarbeitet BMS-Freitage ( 19223111 )

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Holger Reich

a.SAP verarbeitet Fachdidaktik Mathematik - Wahlmodul ( 19233111 )

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Brigitte Lutz-Westphal

Feld Evento
Textunterschiede
Lehrplanung Operationen
Englische zusätzliche Informationen <p>Die Veranstaltung findet jeweils Donnerstags, 16-18 Uhr im SR 001 in der Arnimallee 2 statt.</p>
<p>Die Veranstaltung findet jeweils Donnerstags, 16-18 Uhr im SR 001 in der Arnimallee 2 statt.</p>
Kein Eintrag
Evento: eVV-Textfeld "Leitung (Publikation)" Evento: Dozierende (28 Lektionen) Lehrplanung
Dozierende in eVV
Rainer Sinn
-
-
Anna Maria Hartkopf
Anna Maria Hartkopf
Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Martina Lenze

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Brigitte Lutz-Westphal

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Katharina Skutella

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Elisabeth Brunner

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Alexander Schulte

a.Publiziert Lehrerweiterbildungskurs Mathematik 8 ( 19240120 )

Feld Evento Lehrplanung Operationen
Dozent

Ehrhard Behrends

Ralph-Hardo Schulz

Volker Schulze

Gabriella Artisi

Ralph-Hardo Schulz

Evento: eVV-Textfeld "Leitung (Publikation)" Evento: Dozierende (27 Lektionen) Lehrplanung
Dozierende in eVV
Ralph-Hardo Schulz
Ehrhard Behrends
N.N.
Volker Schulze
Gabriella Artisi
Ralph-Hardo Schulz
Ehrhard Behrends
-
Volker Schulze
Gabriella Artisi
Ralph-Hardo Schulz
Feld Evento
Textunterschiede
Lehrplanung Operationen
Englische zusätzliche Informationen <div> <p>Die Studierenden besuchen die Vorlesungen der Konferenz. Gespr&auml;che mit Referenten und Teilnehmern werden dringend empfohlen.</p> <p><strong>Vor der Konferenz</strong> melden sich die Studenten f&uuml;r den Kurs an. Nach R&uuml;cksprache mit dem Dozenten w&auml;hlen sie eine algebraische geometrische Vorlesung und eine nicht-algebraische geometrische Vorlesung als Hauptthemen. Sie schreiben ein Paper zu ihren beiden Themen (Abgabe im Februar) und werden im Rahmen der Status-Workshops der TES im Dezember einen Vortrag zu einem Thema halten.</p> </div>
<div> <p>Die Studierenden besuchen die Vorlesungen der Konferenz. Gespräche mit Referenten und Teilnehmern werden dringend empfohlen.</p> <p><strong>Vor der Konferenz</strong> melden sich die Studenten für den Kurs an. Nach Rücksprache mit dem Dozenten wählen sie eine algebraische geometrische Vorlesung und eine nicht-algebraische geometrische Vorlesung als Hauptthemen. Sie schreiben ein Paper zu ihren beiden Themen (Abgabe im Februar) und werden im Rahmen der Status-Workshops der TES im Dezember einen Vortrag zu einem Thema halten.</p> </div>
Kein Eintrag
Feld Evento Lehrplanung Operationen
Dozent

Karin Bergmann

Sabine Giese

Ralph-Hardo Schulz

Ute Minne

Ralph-Hardo Schulz

Feld Evento
Textunterschiede
Lehrplanung Operationen
Englische zusätzliche Informationen <p>Die Veranstaltung findet jeweils Montags, 16-18 Uhr im SR 001 in der Arnimallee 2 statt.</p>
<p>Die Veranstaltung findet jeweils Montags, 16-18 Uhr im SR 001 in der Arnimallee 2 statt.</p>
Kein Eintrag

a.SAP verarbeitet Forschungsprojekt A ( 19236912 )

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Rupert Klein

Frank Noe

Nikki Vercauteren

Roland Netz

a.SAP verarbeitet Forschungsprojekt B ( 19237012 )

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Rupert Klein

Frank Noe

Nikki Vercauteren

Roland Netz

a.Publiziert Forschungsseminar Moleküle im Rechner ( 19210216 )

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Christof Schütte

a.SAP verarbeitet Forschungsprojekt C ( 19237112 )

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Rupert Klein

Frank Noe

Nikki Vercauteren

Roland Netz

a.SAP verarbeitet Forschungsprojekt D ( 19237212 )

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Rupert Klein

Frank Noe

Nikki Vercauteren

Roland Netz

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Ralf Borndörfer

Niels Lindner

a.SAP verarbeitet Forschungsprojekt E ( 19237312 )

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Rupert Klein

Frank Noe

Nikki Vercauteren

Roland Netz

a.SAP verarbeitet Seminar: Machine Learning and Optimization ( 19240411 )

Feld Evento Textunterschiede Lehrplanung Operationen
Beschreibung <p>Inhalt:</p> <p>Methoden des Machine Learning und der Diskreten Optimierung lassen sich auf vielf&auml;ltige Art und Weise kombinieren. In diesem Seminar konzentrieren wir uns auf den Einsatz von Verfahren des Machine Learning zur Verbesserung von bereits bestehenden Optimierungsalgorithmen, insbesondere von L&ouml;sern f&uuml;r Gemischt-Ganzzahlige (Lineare) Programme.</p> <p>Bei welchen Subroutinen bekannter Optimierungsalgorithmen k&ouml;nnen Machine-Learning-Verfahren zum Einsatz kommen? Welche Methoden des Machine Learning sind besonders geeignet, um die Entscheidungsfindung in Optimierungsalgorithmen zu unterst&uuml;tzen? Welche Problemklassen profitieren von einem kombinierten L&ouml;sungsansatz? Diese Fragen sind in der Literatur der letzten f&uuml;nf Jahre ausgiebig diskutiert und zum Teil beantwortet worden. In diesem Seminar werden wir einige Highlights aktueller Forschung n&auml;her betrachten und Einblicke in aktuelle Entwicklungen erhalten.</p> <div class="field field-label-above field-name-field-lecture-content field-type-text-long"> <div class="field-label"> <p>Inhalt:</p> <p>Methoden des Machine Learning und der Diskreten Optimierung lassen sich auf vielfältige Art und Weise kombinieren. In diesem Seminar konzentrieren wir uns auf den Einsatz von Verfahren des Machine Learning zur Verbesserung von bereits bestehenden Optimierungsalgorithmen, insbesondere von Lösern für Gemischt-Ganzzahlige (Lineare) Programme.</p> <p>Bei welchen Subroutinen bekannter Optimierungsalgorithmen können Machine-Learning-Verfahren zum Einsatz kommen? Welche Methoden des Machine Learning sind besonders geeignet, um die Entscheidungsfindung in Optimierungsalgorithmen zu unterstützen? Welche Problemklassen profitieren von einem kombinierten Lösungsansatz? Diese Fragen sind in der Literatur der letzten fünf Jahre ausgiebig diskutiert und zum Teil beantwortet worden. In diesem Seminar werden wir einige Highlights aktueller Forschung näher betrachten und Einblicke in aktuelle Entwicklungen erhalten.</p> </div> </div> <div class="field field-label-above field-name-field-lecture-content field-type-text-long"> <div class="field-label"> <p>Inhalt:</p> <p>Methoden des Machine Learning und der Diskreten Optimierung lassen sich auf vielf&auml;ltige Art und Weise kombinieren. In diesem Seminar konzentrieren wir uns auf den Einsatz von Verfahren des Machine Learning zur Verbesserung von bereits bestehenden Optimierungsalgorithmen, insbesondere von L&ouml;sern f&uuml;r Gemischt-Ganzzahlige (Lineare) Programme.</p> <p>Bei welchen Subroutinen bekannter Optimierungsalgorithmen k&ouml;nnen Machine-Learning-Verfahren zum Einsatz kommen? Welche Methoden des Machine Learning sind besonders geeignet, um die Entscheidungsfindung in Optimierungsalgorithmen zu unterst&uuml;tzen? Welche Problemklassen profitieren von einem kombinierten L&ouml;sungsansatz? Diese Fragen sind in der Literatur der letzten f&uuml;nf Jahre ausgiebig diskutiert und zum Teil beantwortet worden. In diesem Seminar werden wir einige Highlights aktueller Forschung n&auml;her betrachten und Einblicke in aktuelle Entwicklungen erhalten.</p> </div> </div>
Dozent Kein Eintrag

Timo Berthold

a.SAP verarbeitet Übung zu Optimale Touren in Graphen ( 19211202 )

Feld Evento Lehrplanung Operationen
Dozent

Niels Lindner

Pedro Maristany de las Casas

Niels Lindner

a.SAP verarbeitet Seminar: Advanced delay equations ( 19239711 )

Feld Evento Lehrplanung Operationen
Submodul

0280bA7.5.1

0280cA4.7.1

0280cA4.8.1

0280cA4.9.1

0280bA.7.5.1

-

-

-

a.SAP verarbeitet Übung zu Analysis I ( 19202802 )

Feld Evento Lehrplanung Operationen
Submodul

0082aA1.1.2

0082fA1.4.2

0084aA1.1.2

0084cA1.1.2

0084dA1.1.2

0426aA1.5.2

-

0426bA1.7.2

0513bA2.1.2

0521aA7.1.2

0082aA.1.1.2

0082fA.1.4.2

0084aA.1.1.2

0084cA.1.1.2

0084dA.1.1.2

0426aA.1.5.2

0426bA.1.6.2

-

0513bA.2.1.2

0521aA.7.1.2

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Ralf Kornhuber

Feld Evento
Textunterschiede
Lehrplanung Operationen
Englische Beschreibung <p ">This course is associated with the Thematic Einstein Semester (TES)&nbsp;<a href="http://ehrhart.math.fu-berlin.de/agplus/index.php">Varieties, Polyhedra, Computation</a>&nbsp;organised within the framework of the Berlin Mathematics Research Center&nbsp;<a href="http://www.mathplus.de/">MATH+</a>&nbsp;and supported by the&nbsp;<a href="https://www.einsteinfoundation.de/en/">Einstein Foundation Berlin</a>.</p> <p ">Solving systems of polynomial equations over the real or complex numbers is a basic, ubiquitous, and highly relevant mathematical task. Over the past two decades, there has been dramatic progress in our ability to practically solve polynomial systems and explore their solution sets.</p> <p ">This course will center around a specific approach to solving sets of polynomial equations: numerical homotopy continuation. Numerical methods are particularly appealing&nbsp;&nbsp;for &ldquo;large&rdquo; problems&nbsp;due to their speed in computations. However, numerical computations only yields approximate solutions, the output is not exact. This is why, traditionally, homotopy continuation has been considered as a branch of applied mathematics. &nbsp;For instance, homotopy continuation is a popular tool in computing the solutions of kinematic problems in engineering.</p> <p ">In this course, Students will learn to solve their own systems with the Julia package&nbsp;<a href="https://www.juliahomotopycontinuation.org/">HomotopyContinuation.jl</a>. Next to solving problems from application, they will also learn how output from numerical homotopy continuation can be used in rigorous mathematical proofs. For instance, an instance of&nbsp;the famous&nbsp;<a href="https://www.juliahomotopycontinuation.org/examples/do-it-yourself/">3264 conics tangent to five given conics</a>&nbsp;was computed using&nbsp;<a href="https://www.juliahomotopycontinuation.org/">HomotopyContinuation.jl</a>, and&nbsp;all its tangential conics where proven to be real.</p> <p><span ">Students work on projects involving the solution of polynomial systems. They present their programs and solutions in conjunction with the Milestones Conference of the TES in February.</span></p> <p ">This course is associated with the Thematic Einstein Semester (TES) <a href="http://ehrhart.math.fu-berlin.de/agplus/index.php">Varieties, Polyhedra, Computation</a> organised within the framework of the Berlin Mathematics Research Center <a href="http://www.mathplus.de/">MATH+</a> and supported by the <a href="https://www.einsteinfoundation.de/en/">Einstein Foundation Berlin</a>.</p> <p ">Solving systems of polynomial equations over the real or complex numbers is a basic, ubiquitous, and highly relevant mathematical task. Over the past two decades, there has been dramatic progress in our ability to practically solve polynomial systems and explore their solution sets.</p> <p ">This course will center around a specific approach to solving sets of polynomial equations: numerical homotopy continuation. Numerical methods are particularly appealing  for “large” problems due to their speed in computations. However, numerical computations only yields approximate solutions, the output is not exact. This is why, traditionally, homotopy continuation has been considered as a branch of applied mathematics.  For instance, homotopy continuation is a popular tool in computing the solutions of kinematic problems in engineering.</p> <p ">In this course, Students will learn to solve their own systems with the Julia package <a href="https://www.juliahomotopycontinuation.org/">HomotopyContinuation.jl</a>. Next to solving problems from application, they will also learn how output from numerical homotopy continuation can be used in rigorous mathematical proofs. For instance, an instance of the famous <a href="https://www.juliahomotopycontinuation.org/examples/do-it-yourself/">3264 conics tangent to five given conics</a> was computed using <a href="https://www.juliahomotopycontinuation.org/">HomotopyContinuation.jl</a>, and all its tangential conics where proven to be real.</p> <p><span ">Students work on projects involving the solution of polynomial systems. They present their programs and solutions in conjunction with the Milestones Conference of the TES in February.</span></p> <p style="text-align:start">This course is associated with the Thematic Einstein Semester (TES)&nbsp;<a href="http://ehrhart.math.fu-berlin.de/agplus/index.php">Varieties, Polyhedra, Computation</a>&nbsp;organised within the framework of the Berlin Mathematics Research Center&nbsp;<a href="http://www.mathplus.de/">MATH+</a>&nbsp;and supported by the&nbsp;<a href="https://www.einsteinfoundation.de/en/">Einstein Foundation Berlin</a>.</p> <p style="text-align:start">Solving systems of polynomial equations over the real or complex numbers is a basic, ubiquitous, and highly relevant mathematical task. Over the past two decades, there has been dramatic progress in our ability to practically solve polynomial systems and explore their solution sets.</p> <p style="text-align:start">This course will center around a specific approach to solving sets of polynomial equations: numerical homotopy continuation. Numerical methods are particularly appealing&nbsp;&nbsp;for &ldquo;large&rdquo; problems&nbsp;due to their speed in computations. However, numerical computations only yields approximate solutions, the output is not exact. This is why, traditionally, homotopy continuation has been considered as a branch of applied mathematics. &nbsp;For instance, homotopy continuation is a popular tool in computing the solutions of kinematic problems in engineering.</p> <p style="text-align:start">In this course, Students will learn to solve their own systems with the Julia package&nbsp;<a href="https://www.juliahomotopycontinuation.org/">HomotopyContinuation.jl</a>. Next to solving problems from application, they will also learn how output from numerical homotopy continuation can be used in rigorous mathematical proofs. For instance, an instance of&nbsp;the famous&nbsp;<a href="https://www.juliahomotopycontinuation.org/examples/do-it-yourself/">3264 conics tangent to five given conics</a>&nbsp;was computed using&nbsp;<a href="https://www.juliahomotopycontinuation.org/">HomotopyContinuation.jl</a>, and&nbsp;all its tangential conics where proven to be real.</p> <p><span style="color:#000000; font-family:Helvetica; font-size:12px">Students work on projects involving the solution of polynomial systems. They present their programs and solutions in conjunction with the Milestones Conference of the TES in February.</span></p>

a.SAP verarbeitet Übung zu Analysis III ( 19201302 )

Feld Evento Lehrplanung Operationen
Dozent

Robert Malte Polzin

Luzie Helfmann

Péter Koltai

N. N.

a.SAP verarbeitet Übung zu Lineare Algebra I ( 19201402 )

Feld Evento Lehrplanung Operationen
Submodul

0082aA1.3.2

0082fA1.5.2

0084aA2.1.2

0084cA1.4.2

0084dA1.4.2

0426aA1.5.2

-

0426bA1.7.2

0513bA2.1.2

0521aA7.3.2

0082aA.1.3.2

0082fA.1.5.2

0084aA.2.1.2

0084cA.1.4.2

0084dA.1.4.2

0426aA.1.5.2

0426bA.1.6.2

-

0513bA.2.1.2

0521aA.7.3.2

a.Absage verarbeitet Practice seminar for Inside Finite Elements ( 19216402 )

Feld Evento Lehrplanung Operationen
Titel Practice seminar for Inside Finite Elements Inside Finite Elements
Feld Evento Lehrplanung Operationen
Dozent

Christine Scharlach

Christine Gärtner

Ulrike Bücking

Christine Scharlach

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Christian Haase

a.SAP verarbeitet Seminar zur stochastischen Analysis ( 19208111 )

Feld Evento
Textunterschiede
Lehrplanung Operationen
Englische Beschreibung <p><strong>Inhalt:</strong> Das Seminar behandelt fortgeschrittene Themen der Stochastik, insbesondere stochastische Analysis.</p> <p><strong>IContenhalt:</strong> DaThe s Seminar bcovehrs andvanceltd ftortgeschrpittenecs Themenof der Sstochastikcs, insbesonde particulare stochastische Aanalysis.</p> <p><strong>Content:</strong> The seminar covers advanced topics of stochastics, in particular stochastic analysis.</p>
Englische zusätzliche Informationen <p><strong>Voraussetzungen:</strong> Stochastik I und II.<br /> <strong>Zielgruppe:</strong> BMS Studierende, Masterstudierende.</p> <p><strong>VoPreraequsiseitzungens:</strong> Stochastikcs I uand II.<br> <strong>ZielTarget Grouppe:</strong> BMS Studierende, Masterstudierende.</p> <p><strong>Prerequisites:</strong> Stochastics I and II.<br /> <strong>Target Group:</strong> BMS Studierende, Masterstudierende.</p>

a.SAP verarbeitet Proseminar zur Algebra/Zahlentheorie: Primzahlen ( 19227010 )

Feld Evento
Textunterschiede
Lehrplanung Operationen
Englische Beschreibung <p><span style="font-size:11pt"><span style="font-family:&quot;Calibri&quot;,sans-serif">Primzahlen sind die Bausteine f&uuml;r alle Zahlen und &uuml;ben seit jeher eine gro&szlig;e Faszination aus, die weit &uuml;ber die Mathematik hinausgeht.</span></span></p> <p><span style="font-size:11pt"><span style="font-family:&quot;Calibri&quot;,sans-serif">Nicht nur tiefliegende S&auml;tze und Vermutungen der reinen Mathematik besch&auml;ftigen sich mit Primzahlen, sondern auch handfeste Probleme des Alltags, die mit der Verschl&uuml;sselung von Daten zu tun haben, ben&ouml;tigen sie, in dem genannten Fall sehr gro&szlig;e Primzahlen.</span></span></p> <p><span style="font-size:11pt"><span style="font-family:&quot;Calibri&quot;,sans-serif">In dem Proseminar werden ausgew&auml;hlte Kapitel aus dem Buch:</span></span></p> <p><span style="font-size:11pt"><span style="font-family:&quot;Calibri&quot;,sans-serif">Die Welt der Primzahlen: Geheimnisse und Rekorde von Paulo Ribenboim, erschienen bei Springer Berlin Heidelberg, Berlin, Heidelberg, 2006</span></span></p> <p><span style="font-size:11pt"><span style="font-family:&quot;Calibri&quot;,sans-serif">besprochen. (Das Buch ist &uuml;ber die Freie Universit&auml;t online verf&uuml;gbar.)</span></span></p> <p><span style="font-size:11pt"><span style="font-family:&quot;Calibri&quot;,sans-serif">Das Seminarprogramm finden Sie auf der <a href="userpage.fu-berlin.de/~aschmitt/PSAZTWS2019.html">Website des Seminars.</a></span></span></p> <p><span style="font-size:11pt"><span style="font-family:&quot;Calibri&quot;,sans-serif">TeilnehmerInnen k&ouml;nnen auch andere Themen aus dem Buch vorschlagen.</span></span></p> <p><span style="font-size:11.0pt"><span style="font-family:&quot;Calibri&quot;,sans-serif">Studierende, die an einer anschliessenden Bachelorarbeit interessiert sind, sollten sich vor der Themenvergabe bei mir melden.</span></span></p>
<p><span><span>Primzahlen sind die Bausteine für alle Zahlen und üben seit jeher eine große Faszination aus, die weit über die Mathematik hinausgeht.</span></span></p> <p><span><span>Nicht nur tiefliegende Sätze und Vermutungen der reinen Mathematik beschäftigen sich mit Primzahlen, sondern auch handfeste Probleme des Alltags, die mit der Verschlüsselung von Daten zu tun haben, benötigen sie, in dem genannten Fall sehr große Primzahlen.</span></span></p> <p><span><span>In dem Proseminar werden ausgewählte Kapitel aus dem Buch:</span></span></p> <p><span><span>Die Welt der Primzahlen: Geheimnisse und Rekorde von Paulo Ribenboim, erschienen bei Springer Berlin Heidelberg, Berlin, Heidelberg, 2006</span></span></p> <p><span><span>besprochen. (Das Buch ist über die Freie Universität online verfügbar.)</span></span></p> <p><span><span>Das Seminarprogramm finden Sie auf der <a href="userpage.fu-berlin.de/~aschmitt/PSAZTWS2019.html">Website des Seminars.</a></span></span></p> <p><span><span>TeilnehmerInnen können auch andere Themen aus dem Buch vorschlagen.</span></span></p> <p><span><span>Studierende, die an einer anschliessenden Bachelorarbeit interessiert sind, sollten sich vor der Themenvergabe bei mir melden.</span></span></p>
Kein Eintrag

a.Publiziert Zentralübung zu Analysis III ( 19201341 )

Feld Evento Lehrplanung Operationen
Titel Zentralübung zu Analysis III Zentralübung zu Analysis II
Evento: eVV-Textfeld "Leitung (Publikation)" Evento: Dozierende (15 Lektionen) Lehrplanung
Dozierende in eVV
Peter Koltai
-
-
Péter Koltai
Peter Koltai

a.Publiziert Zentralübung zu Algebra und Zahlentheorie ( 19200741 )

Feld Evento Lehrplanung Operationen
Kapazität 0 56

a.Publiziert Mentoring für Internationale Studierende ( 19000246 )

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Nathalie Lieckfeld

Isa Adriane Günther

Evento: eVV-Textfeld "Leitung (Publikation)" Evento: Dozierende (1 Lektionen) Lehrplanung
Dozierende in eVV
Nathalie Lieckfeld
Isa Adriane Günther
-
-
Nathalie Lieckfeld
Isa Adriane Günther
Feld Evento Lehrplanung Operationen
SAP Titel Forschungsseminar: Datengetriebene Model Kein Eintrag
Dozent Kein Eintrag

Peter Koltai

a.Publiziert O-Woche Mathematik ( 19200074 )

Feld Evento Lehrplanung Operationen
Dozent Kein Eintrag

Ulrike Seyferth

Evento: eVV-Textfeld "Leitung (Publikation)" Evento: Dozierende (5 Lektionen) Lehrplanung
Dozierende in eVV
Ulrike Seyferth
-
Ulrike Seyferth

Noch nicht publizierte Kurse

Status LV Kursname
a.Absage verarbeitet 19216401 Inside Finite Elements
a.Absage verarbeitet 19216402 Practice seminar for Inside Finite Elements
a.Erneut änderbar 19238911 Optimization in Public Transportation

In Evento fehlende Veranstaltungen

LV Kursname

In Evento Fehlende Begleitveranstaltungen

LV Kursname
19241211 Seminar zu Varieties, Polyhedra, Computation - Opening Conference
19242906 Seminaristischer Unterricht zu Numerische algebraische Geometrie mit Julia

Im Lehrplanungssystem fehlende Veranstaltungen

Status LV Kursname
a.Erneut änderbar 19238911 Optimization in Public Transportation