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Polyline Simplification
Given a polyline p1, . . . ,pn. We want to find a minimum size subsequence, starting

with p1 and ending with pn, which is close to the original polyline.
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Close: Fréchet distance or Hausdorff distance ≤ ê.
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Fréchet Distance
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Hausdorff Distance
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Douglas-Peucker

I Find farthest point.

I If too far away:

subdivide and

recurse.
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Imai-Iri

I Find all valid links.

I Use shortest path in

link graph.
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Approximation Quality
How well do these algorithms work?

They use a local criterion for a global distance function.

image by van Kreveld et al. [3]

8 / 16



Approximation Quality
How well do these algorithms work?

They use a local criterion for a global distance function.

image by van Kreveld et al. [3]

8 / 16



Approximation Quality
How well do these algorithms work?

They use a local criterion for a global distance function.

image by van Kreveld et al. [3]
8 / 16



Approximation Quality with Hausdorff Distance

image by van Kreveld et al. [2]

Theorem 1

For any c > 1,

there exists a polyline P with n vertices and ê > 0 such that IIH(P,

c

ê)
has n vertices and OPTH(P, ê) has 3 vertices.
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Approximation Quality with Fréchet Distance
Douglas-Peucker
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Theorem 2

For any c > 1,

there exists a polyline P with n vertices and ê > 0 such that DPF(P,

c

ê)
has n vertices and OPTF(P, ê) has 4 vertices.
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Imai-Iri
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Approximation Quality with Fréchet Distance
Imai-Iri
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Theorem 3
There exist 1 < c1

< 4

, 1 < c2 such that for any n > 0, a polyline P with n vertices and

ê > 0 exist such that |IIF(P,c1ê)| > c2|OPTF(P, ê)|.
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Algorithmic Complexity of the Optimal Solutions

I Computing the minimum length subsequence with Hausdorff distance at most ê
is NP-hard.

I Computing the minimum length subsequence with Fréchet distance at most ê is
possible in O(n3) time [1].
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Thank you!
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