# Noon Seminar <br> On Optimal Polyline Simplification Using the Hausdorff and Fréchet Distance 

Alexander Kauer<br>Paper by van Kreveld, Löffler, Wiratma, JoCG '20 [3]

2020-05-28

## Polyline Simplification


(c) openstreetmap.org contributors, CC BY-SA

## Polyline Simplification

Given a polyline $p_{1}, \ldots, p_{n}$. We want to find a minimum size subsequence, starting with $p_{1}$ and ending with $p_{n}$, which is close to the original polyline.


## Polyline Simplification

Given a polyline $p_{1}, \ldots, p_{n}$. We want to find a minimum size subsequence, starting with $p_{1}$ and ending with $p_{n}$, which is close to the original polyline.


## Polyline Simplification

Given a polyline $p_{1}, \ldots, p_{n}$. We want to find a minimum size subsequence, starting with $p_{1}$ and ending with $p_{n}$, which is close to the original polyline.


Close: Fréchet distance or Hausdorff distance $\leq \varepsilon$.

Fréchet Distance


Fréchet Distance


Fréchet Distance


Fréchet Distance


Fréchet Distance


## Fréchet Distance



## Fréchet Distance



## Hausdorff Distance



## Hausdorff Distance



## Douglas-Peucker



## Douglas-Peucker

- Find farthest point.
- If too far away: subdivide and recurse.



## Douglas-Peucker

- Find farthest point.
- If too far away: subdivide and recurse.



## Douglas-Peucker

- Find farthest point.
- If too far away: subdivide and recurse.



## Douglas-Peucker

- Find farthest point.
- If too far away: subdivide and recurse.



## Imai-Iri



## Imai-Iri

- Find all valid links.
- Use shortest path in link graph.



## Imai-Iri

- Find all valid links.
- Use shortest path in link graph.



## Approximation Quality

How well do these algorithms work?

## Approximation Quality

How well do these algorithms work?
They use a local criterion for a global distance function.

## Approximation Quality

How well do these algorithms work?
They use a local criterion for a global distance function.

image by van Kreveld et al. [3]

## Approximation Quality with Hausdorff Distance


image by van Kreveld et al. [2]

## Approximation Quality with Hausdorff Distance


image by van Kreveld et al. [2]
Theorem 1
there exists a polyline $P$ with $n$ vertices and $\varepsilon>0$ such that $\|_{H}(P, \varepsilon)$ has $n$ vertices and $O P T_{H}(P, \varepsilon)$ has 3 vertices.

## Approximation Quality with Hausdorff Distance


image by van Kreveld et al. [2]
Theorem 1
For any $c>1$, there exists a polyline $P$ with $n$ vertices and $\varepsilon>0$ such that $\|_{H}(P, c \varepsilon)$ has $n$ vertices and $O P T_{H}(P, \varepsilon)$ has 3 vertices.

## Approximation Quality with Fréchet Distance

## Douglas-Peucker



image by van Kreveld et al. [2]

## Approximation Quality with Fréchet Distance

## Douglas-Peucker


image by van Kreveld et al. [2]

## Theorem 2

there exists a polyline $P$ with $n$ vertices and $\varepsilon>0$ such that $D P_{F}(P, \varepsilon)$ has $n$ vertices and $O P T_{F}(P, \varepsilon)$ has 4 vertices.

## Approximation Quality with Fréchet Distance

## Douglas-Peucker


image by van Kreveld et al. [2]
Theorem 2
For any $c>1$, there exists a polyline $P$ with $n$ vertices and $\varepsilon>0$ such that $D P_{F}(P, c \varepsilon)$ has $n$ vertices and $O P T_{F}(P, \varepsilon)$ has 4 vertices.

## Approximation Quality with Fréchet Distance



## Approximation Quality with Fréchet Distance

Imai-Iri


image by van Kreveld et al. [2]

## Approximation Quality with Fréchet Distance

## Imai-Iri



image by van Kreveld et al. [2]

Theorem 3
There exist $1<c_{1} \quad, 1<c_{2}$ such that for any $n>0$, a polyline $P$ with $n$ vertices and $\varepsilon>0$ exist such that $\left|I I_{F}\left(P, c_{1} \varepsilon\right)\right|>c_{2}\left|O P T_{F}(P, \varepsilon)\right|$.

## Approximation Quality with Fréchet Distance

## Imai-Iri



image by van Kreveld et al. [2]

Theorem 3
There exist $1<c_{1}<4,1<c_{2}$ such that for any $n>0$, a polyline $P$ with $n$ vertices and $\varepsilon>0$ exist such that $\left|I_{F}\left(P, c_{1} \varepsilon\right)\right|>c_{2}\left|O P T_{F}(P, \varepsilon)\right|$.

## Algorithmic Complexity of the Optimal Solutions

- Computing the minimum length subsequence with Hausdorff distance at most $\varepsilon$ is NP-hard.
- Computing the minimum length subsequence with Fréchet distance at most $\varepsilon$ is possible in $\mathcal{O}\left(n^{3}\right)$ time [1].

Thank you!

## For Further Reading I

[1] Karl Bringmann and Bhaskar Ray Chaudhury. "Polyline Simplification has Cubic Complexity". In: 35th International Symposium on Computational Geometry (SoCG 2019). Ed. by Gill Barequet and Yusu Wang. Vol. 129. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019, 18:1-18:16. ISBN: 978-3-95977-104-7. DOI: 10.4230/LIPIcs.SoCG.2019.18. URL: http://drops.dagstuhl.de/opus/volltexte/2019/10422.
[2] Marc van Kreveld, Maarten Löffler, and Lionov Wiratma. "On Optimal Polyline Simplification Using the Hausdorff and Fréchet Distance". In: arXiv:1803.03550 [cs] (Mar. 27, 2018). arXiv: 1803.03550. URL: http://arxiv.org/abs/1803.03550.
[3] Marc van Kreveld, Maarten Löffler, and Lionov Wiratma. "On Optimal Polyline Simplification Using the Hausdorff and Fréchet Distance". In: JoCG 11.1 (2020), pp. 1-25. URL:
https://journals.carleton.ca/jocg/index.php/jocg/article/view/415.


