	On the Average Complexity of the k-level
	Joint work with Stefan Felsner, Manfred Scheucher, Patrick Schnider, Raphael Steiner and Pavel Valtr
	Graz
	the stand
	(B) (- Unit
	k Patrick
	bottom
	Previous results $O(n k^{\frac{1}{3}}) b Pey$
	on the size of the k-level: $(1/2)^{(1/2)}$
	he Wivash
	median O(h") smaller value by averaging
_	
	great-circle arrangement
	XX
	Ś
	dist(x,y) and k-level of \mathscr{C}

rednesday, April 15, 2020 11:21 AM

| k-level of C = | k-level of L) $+ \left[(h - k^{-2}) - |ae| + L \right]$ Bit tight ? Thm. Given any arrangement of n great-circles. The expected size of KCC no the (\leq k)-level from a random cell is $O(k^2)$. k-level $\frac{\sum_{cell \ F \ in \ C} |\{v \ in \ C : dist(F, v) \leq k\}|}{\#cells} = O(k^2 h^2)$ $= O(k^2)$ $\#cells = 2({}^{h}_{2}) + 2 = O(h^2)$ Expected size = **Higher order zone theorem** : Let \mathscr{L} be a simple arrangement of n lines in \mathbb{R}^2 and h in \mathscr{L} . The $(\leq k)$ -zone of h contains O(kn). Fix H⁻ H^+ $\sum_{cell \ F \ in \ C} |\{ v \ in \ C : dist(F, v) \le k\}|$ $h \leq \sum_{H^{-}} \sum_{boundary \ cell \ F \ in \ H^{-}} \frac{|\{v \ in \ H^{+} : dist(F, v) \leq k\}|}{O(h) O(n)}$ н-Fix H⁻, v $\begin{array}{l} H^{+} = \sum_{H^{-}} \sum_{v \text{ in } H^{+}} |\{ bdy F \text{ in } H^{-} : dist(F, v) \leq k \}| \\ O(h) & O(k) \\ O(k) & O(k) \\ \end{array}$ (K

New Section 1 Page 2

 $\partial(n) \bigvee o(k_n) = O(k'n')$ H 23 \$ 4 ak) 25 h $\frac{2}{1}$ left H H vight (l,r) 5-(, l++5+ l r (3,1) (3,2) (2,2) (1,2) (0,2)

, , いうり) (1, 4) (0,2) -do-X $(7(',\gamma'))$ (X,Y) 1x ty & K-1 x't Y' ≤ K-] langest right-nool leff-most Hontonuls from (x,y)->(x,y') $x \le k - i = x - x' + y' - y + i$ $y' \le k - i \le 2k - i$ N Random great-(d-1)-spheres in S^d vandom N **Thm:** Let $d \ge 2$ be fixed. In an arrangement of n great-(d - 1)-spheres chosen uniformly at random on the unit sphere S^d (embedded in R^{d+1}), the expected size of the k-level is $\Theta(k^{d-1})$. size k-lavel Previous results on $\Omega(n^{\lfloor d/2 \rfloor} k^{\lceil d/2 \rceil - 1}) \le f_k^{(d)}(n) \le O(n^{\lfloor d/2 \rfloor} k^{\lceil d/2 \rceil - c_d})$ arrangement in R^d:

× - • • • × · arrangement in K": points sampled uniform at random in a convex shape K Previous results on random points in R²: K is a disk, the convex hull (0-level) has expected size is $\mathsf{O}(n^{1/3})$ K is a convex polygon with h sides, the expected size is $O(h \log n)$ * (lss hyp