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The Problem
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Given: N points P in the plane

Want: closest pair of P
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O(N log N) Algorithm by Bentley-Shamos
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classic textbook algorithm: sort by x-coordinate, split on 

median, recurse, combine results using median slab 
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General Metric Spaces
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P: finite set with N elements

d: P x P → R0

1. d(x, y) = 0  x = y,            f.a. x, y  P

2. d(x, y) = d(y, x),     f.a. x, y  P

3. d(x, y)  d(x, z) + d(z, y),      f.a. x, y, z  P

Assumption: Have O(1) oracle to compute d(x, y) for 

given x, y  P.

Lower bound: Need (N2) time in general metric spaces.

Exactly one pairwise distance = 1, all other pairwise 

distances = 2.



5

Doubling Dimension
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ball B(p, R) = { q  P | d(p, q)  R } 

Suppose every ball B(p, R) in P can be covered by λ

balls with radius R/2, for every q  P, R  0.

doubling dimension of P: d = log λ
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Doubling Dimension
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The discrete metric space has doubling dimension log N.

R2 has doubling dimension log 7.

The doubling dimension in a subspace may go up, but 

only by a factor of 2.
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Closest Pairs in Doubling Metrics
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doubling metric: metric space with constant doubling

dimension

Can still find the closest pair in O(N log N) expected time.

No coordinates? No Slabs? No Grids?

Use balls and annuli.
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Closest Pairs in Doubling Metrics
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First O(N log N) expected time algorithm by Har-Peled

and Ali Abam (SSPD) (2010). We make it simpler.

Lemma: Let B be a ball in P with N/8d points. Then, 

radius(B) = ( N1/d), where  = closest pair distance.
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Closest Pairs in Doubling Metrics
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Lemma: Let B be minimum-radius ball in P with N/8d points. 

Let q  B and B‘ minimum-radius ball around q with N/8d

points. Let B‘‘ be concentric ball to B‘ around q with double 

radius. Then, B‘‘ contains at most N/2d points.
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Closest Pairs in Doubling Metrics
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Lemma: Let B be minimum-radius ball in P with N/8d points. 

Let q  B and B‘ minimum-radius ball around q with N/8d

points. Let B‘‘ be concentric ball to B‘ around q with double 

radius. Then, B‘‘ contains at most N/2d points and between

B and B‘‘, we can find an annulus with witdh  that contains

O(N1-1/d) points.
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Closest Pairs in Doubling Metrics
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Algorithm: Pick random q  P. With probability 1/8d, we have

q  B. Take minimum-radius ball B‘ around q with N/8d points. 

Check if at most N/2d points in B‘‘. If not, repeat. If yes, find 

sparse separating annulus and recurse.
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Closest Pairs in Doubling Metrics
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Result: The expected running time of this algorithm is

O(N log N).


