## Closest Pairs in Doubling Metrics

Anil Maheshwari Wolfgang Mulzer


Carieton
UNIVERSITY


Michiel Smid


Carleton

## The Problem

Given: N points P in the plane
Want: closest pair of $P$

$\theta$
$\varnothing$

## O(N log N) Algorithm by Bentley-Shamos

classic textbook algorithm: sort by x-coordinate, split on median, recurse, combine results using median slab


## General Metric Spaces

$P$ : finite set with $N$ elements
$\mathrm{d}: \mathrm{P} \times \mathrm{P} \rightarrow \mathrm{R}_{\geq 0}$

1. $d(x, y)=0 \leftrightarrow x=y$,
2. $d(x, y)=d(y, x)$,
f.a. $x, y \in P$
3. $d(x, y) \leq d(x, z)+d(z, y)$,
f.a. $x, y \in P$
fan, $\mathrm{y}, \mathrm{z} \in \mathrm{P}$
Assumption: Have $\mathrm{O}(1)$ oracle to compute $\mathrm{d}(\mathrm{x}, \mathrm{y})$ for given $x, y \in P$.

Lower bound: Need $\Omega\left(\mathrm{N}^{2}\right)$ time in general metric spaces.
Exactly one pairwise distance $=1$, all other pairwise distances $=2$.


## Doubling Dimension

ball $\&(p)(R)=\{q \in P \mid d(p, q) \leq R\}$
Suppose every ball $B(p, R)$ in $P$ can be covered by $\lambda$ balls with radius $R / 2$, for every $q \in P, R \geq 0$.
doubling dimension of $P: d=\log \lambda$


Doubling Dimension
The discrete metric space has doubling dimension $\log \mathrm{N}$ ．
－ $\mathrm{R}^{2}$ has doubling dimension $\log 7$ ．
The doubling dimension in a subspace may go up，but only by a factor of 2 ．

$$
\begin{aligned}
& \sqrt{N} \quad \log \sqrt{N}=\frac{1}{2} a r \\
& \text { 甪学 } \\
& \frac{1}{12 / 12!~ 1\}_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& B(\rho, 1)=\rho \quad B(\rho, 112)=\{\rho 3 \quad \operatorname{lcs} N
\end{aligned}
$$

## Closest Pairs in Doubling Metrics

doubling metric: metric space with constant doubling dimension

Can still find the closest pair in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ expected time.
No coordinates? No Slabs? No Grids?

Use balls and annuli.


## Closest Pairs in Doubling Metrics

First $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ expected time algorithm by Har-Peled and Ali Abam (SSPD) (2010). We make it simpler.

Lemma. Let B be-a-ball in P with $\mathrm{N} / 8^{\mathrm{d}}$ points. Then,
radius $(\mathrm{B})=\Omega\left(\delta \mathrm{N}^{1 / d}\right)$, yhere $\delta=$ closest pair distance.


$$
\begin{aligned}
& N \leq 2^{d \operatorname{lin} \frac{k}{\delta}} \\
& N=\left|\frac{R}{\gamma^{1}}\right|^{d / d} \\
& R \approx N^{d} \cdot \delta
\end{aligned}
$$

## Closest Pairs in Doubling Metrics

Lemma: Let B be minimum-radius ball in P with $\mathrm{N} / 8^{\mathrm{d}}$ points.
Let $q \in B$ and $B^{\prime}$ minimum-radius ball around $q$ with $N / 8^{d}$ points. Let B" be concentric ball to B‘ around q with double radius. Then, $\mathrm{B}^{\prime \prime}$ contains at most $\mathrm{N} / 2 \mathrm{~d}$ points.


## Closest Pairs in Doubling Metrics

Lemma: Let B be minimum-radius ball in P with $\mathrm{N} / 8^{\mathrm{d}}$ points.
Let $q \in B$ and $B^{\prime}$ minimum-radius ball around $q$ with $N / 8^{d}$ points. Let B" be concentric ball to B‘ around q with double radius. Then, $\mathrm{B}^{\text {" }}$ contains at most $\mathrm{N} / 2^{\mathrm{d}}$ points and between B and B", we can find an annulus with with $\delta$ that contains $O\left(N^{\prime}-1 / d\right)$ points.


## Closest Pairs in Doubling Metrics

Algorithm: Pick random $q \in P$. With probability $1 / 8^{d}$, we have $q \in B$. Take minimum-radius ball $B^{\prime}$ around $q$ with $N / 8^{d}$ points.
Check if at most $\mathrm{N} / 2^{\mathrm{d}}$ points in $\mathrm{B}^{\prime \prime}$. If not, repeat. If yes, find sparse separating annulus and recurse.
$N$


## Closest Pairs in Doubling Metrics

Result: The expected running time of this algorithm is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$.

$$
\begin{gathered}
T(N)=T\left(N_{1}\right)+T\left(N_{2}\right)+O(N) \\
N_{1}+N_{2}, N+N \\
N_{1,1}, N_{2}=\Omega(N)
\end{gathered}
$$

