ALP3 Algorithmen Datenstrukturen Datenabstraktion

Die Klasse P der in polynomieller Zeit lösbaren Probleme

Problem:

• EINGABE $\in \Sigma^*$, in einem passenden Alphabet Σ' kodient

z.B. Z' = {0,1}

Z.B. Liste von Knoten eines Graphen (Nummern) Kanten mit zugehörigen Gewichten (Dezimelzahlen)

1,7,2,6,13/(1,7): 7.42, (6,2): 12.6604, ...

Länge der Eingabe $\times \in \mathbb{Z}^{+}$: n = |x|

· AUSGABE YEZ*

z.B. Liste von Knoten mit Abständen vom <u>ersten</u> Knoten (kürzeste Weye)

1:0; 7:3.14; 2: ····

LAUFZEIT eines Algorithmus:

T(n) := max { Laufzeit (= Anzahl von Schritten")

über alle Eingaben der Länge ≤ n}

DEFINITION

 $P = \{Probleme A \mid Es gibt einen Algorithmus, der A löst und Konstanten a, k mit Laufzeit <math>T(n) \leq a \cdot n^k$ für alle $n \geq 1$

Polynomielle Laufzeit

•	kürzesk Wege in einem Graphen mit positiven Kaulenlängen.
4	Anzahl der Lösungen für das k-Damen problem auf einem kxk-Feld EP
Lau	Jeneur Définition der Laufzeit erfordert eine formale) Définition eines "Rechnermodells".
	• realitäts nahes Modell: RAM (random-access machine) (dt. Registermaschine) - Zugriff auf eine Speicher zelle über die Adresse in Konstanler Zeit.
	· "primitives" möglichst einforches Modell: Turing-Maschine
	Stenerung (endlicher Äntomat) Schreib-/Lese kop F Band
~	\mathcal{T}

Die Definition von Phängt nicht vom Rechnermodell ab!

SATZ: Ein RAM- Algorithmus mit Loufzeit T (n)

kann auf einer Turing-Maschine mit

Laufzeit O((T(n))3) simulied werden.

(Polynomielle) Reduktion eines Problemes auf ein anderes
Problem A l'asst sich mit Hilfe eines Algorithmus für Problem B lösen.
Algorithmus behommt Eingube XA für Problem A und soll Ausgabe YA berechnen.
Der Algorithmus douf beliebig oft einen hypothetischen Hilfsolgorithmus für Problem B aufnufen: Er stellt eine Eingabe x _B bereit, und krann die Ausgabe y _B weiter ver aubeiten.
Reduktion von A auf B: A < B
A <pb 1="" <pc="" b=""> A <pc< td=""></pc<></pb>
Lonfreit der Reduktion: Laufzeit für die Anfonse von B werden nicht mitgezählt.
Polynomielle Reduktion von A auf B: A <pb< td=""></pb<>
SATZ: A <pb bep="" und=""> A EP</pb>
BEWEIS: TR. Laufzeit des Reduktionsalgorithmus R
$T_B Laufzeit des Algorithnus für B$ $ x_A =n$. R kann den Algorithnus für B höchstens $T_R(n)$ -mal aufrufen. Die Eingabe x_B für B hat die Länge $ x_B \leq T_R(n)$ $\Rightarrow Laufzeit von B: T_B(T_R(n)) \times T_R(n)$
dazu: Loufzeit für R selbst TR(n) => TA(n) = TR(n) + TR(n). TB(TR(n))

Rundreiseproblem und Hamiltonkreis

Rundreiseproblem (Traveling Sales man Problem, TSP) EINGABE Ein vollständiger ungenduteter Graph G mit Kuntengewichten AUSGABE: Ein Kreis, der jeden Knoten genau einmal besucht, mit teleinstern Gesamt gewicht. Hamiltonkreis Hamiltonkreisproblem (HAM) EINGABE: Ein ungerichteker Graph G FRAGE: Enthält Geinen Hamiltonkreis? HAM <PTSP: Reduktion: G_1 .. Eingabe für HAM mit n Knoten G_2 ... volkständiger Gruph mit Kuntenkosten $C(e) = \begin{cases} 1 \\ 2 \end{cases}$ Suche Kürzeste Rundreise in Gz. Gesamtkosten = n -> Ansqube JA.

>n -> Ausgabe NEIN. polynomelle doubiert.