
Course “Empirical Evaluation in Informatics” SoSe 2017

Freie Universität Berlin, Software Engineering Research Group
Prof. Dr. Lutz Prechelt, Franz Zieris

Practice sheet 2 Practice R, part 1 due on 2017-04-30

Preface

The purpose of the next three practice sheets is to get well acquainted with R’s basic
functions for data manipulation and data analysis. The tasks will build upon each either
and they all use the same data.

None of the individual steps is hard: It only takes 1–5 lines of code, the necessary R functi-
ons are listed, and putting them together does not require much ingenuity, just you paying
attention to what you are doing. Additionally, some demo output based on a small subset
of the data is printed at the end of this sheet. This should give you an idea whether what
you are doing for each of the tasks below is going in the right direction: When working on
your solutions, you may use that data subset and validate your implementation using those
outputs. Then you can turn to the complete data sets.

Finally, do not just stop by answering the questions below. Feel encouraged to perform
additional analyses on the data using the R functions you just learned.

Task 2-1: Importing data with R

a) First, get the files jikes.tsv, junit.tsv, zile.tsv, and junit20.tsv from the KVV
(they are bundled in data.zip).

They represent tab-separated CVS1 logs of the projects Jikes,2 JUnit,3 and Zile.4 Each
line represents a check-in process (commit) in CVS. Given are the file name file, the
time tstamp, the caller developer, the file’s version number version, number of lines
added or removed with respect to the prior version (lines_add, lines_del), and the
comment of the check-in description.

The file junit20.tsv contains the first 20 lines of junit.tsv so it can be analyzed by
hand, if need be. This subset is used for the demo output at the end of this sheet.

b) Read one of the data files into a data.frame variable (function needed: read.table

or read.delim).

• Prevent the changing into a factor5 of the timestamp tstamp, the developers’
names developer, and the files’ names file (by using an as.is argument).

• Explicitly add developer and file to your data frame again as factors develo

perf and filef (via cbind plus assignment to names, or simply via $).

• Delete the column description from your data set (by assigning NULL, or via the
function subset).
• The resulting data frame should only contain 8 variables. Get a first overview

to make sure your pre-processing was successful. (functions: names, nrow, str,
summary)

1A version-control system
2A Java compiler, http://jikes.sourceforge.net
3Framework for unit tests in Java, http://junit.org
4An Emacs clone, http://www.gnu.org/software/zile
5In case you haven’t done it already, read up thoroughly on factors in R (?factor). These are used very often.

Creating a factor is a comfortable way to establish the number of different values that exist in a vector without
counting their frequency as table would do it. Apart from that, factors are represented as numbers (as opposed
to strings), which can save much storage space and CPU time when dealing with them.

1 / 3

http://jikes.sourceforge.net
http://junit.org
http://www.gnu.org/software/zile


Now define your own function6 called myread.cvsdata, which will be given a path to
a file with such tab-separated CVS data and returns a data frame with the features
described above.

Include your implementation of myread.cvsdata in your KVV submission. It should be
possible to use your function like this:

junit = myread.cvsdata("junit.tsv")
jikes = myread.cvsdata("jikes.tsv")
ziles = myread.cvsdata("zile.tsv")

Task 2-2: Elementary data analysis

Answer the following developer-related questions for each of the three projects Jikes, JUnit,
and Zile.

You should start by writing functions that take a data frame of the above form as an argu-
ment so they can be reused for every project of interest.

a) How many different developers have actually committed into the CVS repository over-
all?
(possible name for the function: developer.count, functions to use: levels, length)

b) How many changes have been made by the five most active developers respectively?
(possible name: developer.busy, functions to use: sort, table)

c) How many percent of the files did each developer commit at least once?
(possible name: developer.changedfiles)

Hint: There are two approaches here.

1. Count the number of existing files for each developer (tapply, levels, length,
factor, sort), or

2. Create a frequency table (developer by file) and count the non-zero entries for
each developer (table, apply, length, levels, sum, sort).

Method 1 is slightly shorter to write down and scales better (it requires less memory
for bigger data). A frequency table (method 2), however, allows many other queries.

Please answer these questions in natural language, i.e. do not simply paste R’s output, but
at least comment it. (The example outputs at the end of this practice sheet are only for
validating your R implementation. Those are not model “answers”.)

What strikes you when looking at the result concerning question c) for the JUnit data?

Include your implementations of the three functions in your KVV submission.

Example outputs for junit20.tsv

Note: The creation of the outputs below went hand in hand with the compilation of the LATEX
file this document is based on. Google for knitr if you want to know more.

Task 2-1 b)
Inspection of the final data frame created using junit20.tsv:

junit20 = myread.cvsdata("junit20.tsv")

names(junit20)

[1] "file" "tstamp" "developer" "version" "lines_add"
[6] "lines_del" "developerf" "filef"

nrow(junit20)

[1] 20

6Read up on functions (?"function") if necessary.

2 / 3



str(junit20)

'data.frame': 20 obs. of 8 variables:
$ file : chr "/cvsroot/junit/junit/README.html" "/cvsroot/junit/junit/README.html" "/cvsroot/junit/junit/README.html" "/cvsroot/junit/junit/README.html" ...
$ tstamp : chr "2004-11-17 23:07:28.0" "2002-09-01 00:29:52.0" "2002-08-31 18:44:09.0" "2002-08-23 20:43:51.0" ...
$ developer : chr "egamma" "egamma" "egamma" "egamma" ...
$ version : Factor w/ 14 levels "1.1","1.1.1.1",..: 3 14 13 12 11 10 9 8 7 1 ...
$ lines_add : int 660 8 14 128 67 74 20 9 148 0 ...
$ lines_del : int 527 2 3 8 5 248 6 7 10 0 ...
$ developerf: Factor w/ 2 levels "egamma","emeade": 1 1 1 1 1 1 1 1 1 1 ...
$ filef : Factor w/ 2 levels "/cvsroot/junit/junit/build.xml",..: 2 2 2 2 2 2 2 2 2 2 ...

summary(junit20)

file tstamp developer version
Length:20 Length:20 Length:20 1.10 :2
Class :character Class :character Class :character 1.5 :2
Mode :character Mode :character Mode :character 1.6 :2

1.7 :2
1.8 :2
1.9 :2
(Other):8

lines_add lines_del developerf
Min. : 0.00 Min. : 0.00 egamma:16
1st Qu.: 1.75 1st Qu.: 0.75 emeade: 4
Median : 8.50 Median : 3.00
Mean : 58.85 Mean : 42.50
3rd Qu.: 31.75 3rd Qu.: 7.25
Max. :660.00 Max. :527.00

filef
/cvsroot/junit/junit/build.xml : 9
/cvsroot/junit/junit/README.html:11

Task 2-2

Expected raw outputs of the developer-related functions for the JUnit20 data set:

developer.count(junit20)

[1] 2

developer.busy(junit20)

egamma emeade <NA> <NA> <NA>
16 4

developer.changedfiles(junit20)

emeade egamma
50 100

3 / 3


