
Derivation of loopless reflected mixed-radix Gray genera-
tion, Algorithm 7.2.1.1H, p. 300

We start with the simple problem generating all tuples (bn−1, . . . , b1, b0) with 0 ≤ bi < mi in
lexicographic order. (Knuth, TAOCP, Vol. 4A, Algorithm 7.2.1.1M, p. 282)

A digit bi is active if bi < mi − 1.
A digit bi is passive if bi = mi − 1: Such a digit waits until a higher-order digit bj with j > i

changes before it starts running again.
So far, this information is redundant, because it can be read off directly from the value of

the digit itself. Nevertheless, we will keep it in an array active[i]. We also set active[n] = True.

(bn−1, . . . , b1, b0) := (0, 0, . . . , 0, 0)
for i = 0, . . . , n: active[i] := True
Main loop:

VISIT (bn−1, . . . , b1, b0)
look for the rightmost active digit j = ρ(k),

where k = (bn−1, . . . , b1, b0) in mixed-radix representation
and make all intervening digits active:

j := 0
while not active[j]:

bj := 0
active[j] := True
j := j + 1

if j = n: TERMINATE
bj := bj + 1
if bj = mj − 1:

active[j] := False

First extension: Gray code

We simultaneously produce the Gray code for all tuples (an−1, . . . , a1, a0) with 0 ≤ ai < mi.
The delta sequence ρ(k) (k = 1, 2, . . .) of the Gray code is place until which the carry propagates
in lexicographic generation. It equals the ruler function.
Since each digit ai goes alternatively up and down, we need direction variables di ∈ {+1,−1}
for i = 0, . . . , n− 1.

(bn−1, . . . , b1, b0) := (0, 0, . . . , 0, 0)
(an−1, . . . , a1, a0) := (0, 0, . . . , 0, 0)
for i = 0, . . . , n: active[i] := True
for i = 0, . . . , n− 1: di := +1.
Main loop:

VISIT (bn−1, . . . , b1, b0) / VISIT (an−1, . . . , a1, a0)
look for the rightmost active digit j = ρ(k), and make all intervening digits active:
j := 0
while not active[j]:

bj := 0
active[j] := True
j := j + 1

if j = n: TERMINATE
bj := bj + 1
aj := aj + dj
if bj = mj − 1: (OR EQUIVALENTLY:)
if aj = mj − 1 or aj = 0: (alternative test)

active[j] := False
dj := −dj

1



Second extension: Skip pointers

The goal is to eventually avoid the loop that searches for the rightmost active digit j = ρ(k).
Thus we establish skip pointers f [i], i = 0, . . . , n − 1, which have the following meaning. If
bj , bj−1, . . . , bi, for j ≥ i, is a maximal block of consecutive passive digits, then f [i] = j + 1. All
other skip pointers point to themselves: f [i] = i.
These pointers allow us to find the next active digit quickly.

(bn−1, . . . , b1, b0) := (0, 0, . . . , 0, 0)
for i = 0, . . . , n: active[i] := True
for i = 0, . . . , n: f [i] := i.
Main loop:

VISIT (bn−1, . . . , b1, b0)
look for the rightmost active digit j = ρ(k) = f [0], and make all intervening digits active:
j := 0
while j < f [0]:

bj := 0
active[j] := True
j := j + 1

f [0] := 0 (This may be redundant.)
if j = n: TERMINATE
bj := bj + 1
if bj = mj − 1:

active[j] := False
f [j] := f [j + 1]
f [j + 1] := j + 1 (This may be redundant.)

This did not make the program faster, because we still have to set each digit bj to zero while
increasing j. (But we could eliminate active[j] now. It is implicitly given by the f pointers.)

2



Combining the two extensions

Now we combine the two extensions:

(bn−1, . . . , b1, b0) := (0, 0, . . . , 0, 0)
(an−1, . . . , a1, a0) := (0, 0, . . . , 0, 0)
for i = 0, . . . , n: active[i] := True
for i = 0, . . . , n− 1: di := +1.
for i = 0, . . . , n: f [i] := i.
Main loop:

VISIT (bn−1, . . . , b1, b0) / VISIT (an−1, . . . , a1, a0)
look for the rightmost active digit j = ρ(k) = f [0], and make all intervening digits active:
j := 0
while j < f [0]:

bj := 0
active[j] := True
j := j + 1

f [0] := 0 (This may be redundant.)
if j = n: TERMINATE
bj := bj + 1
aj := aj + dj
if bj = mj − 1: (OR EQUIVALENTLY:)
if aj = mj − 1 or aj = 0: (alternative test)

active[j] := False
dj := −dj
f [j] := f [j + 1]
f [j + 1] := j + 1 (This may be redundant.)

If we are only interested in the Gray code and not in the counter bn−1, . . . , b1, b0, we don’t need
the inner loop: we can replace it by j := f [0]. This results in a very compact loopless algorithm
for the reflected Gray code.

(an−1, . . . , a1, a0) := (0, 0, . . . , 0, 0)
for i = 0, . . . , n− 1: di := +1
for i = 0, . . . , n: f [i] := i
Main loop:

VISIT (an−1, . . . , a1, a0)
j := f [0]
f [0] := 0 (This may be redundant.)
if j = n: TERMINATE
aj := aj + dj
if aj = mj − 1 or aj = 0:

dj := −dj
f [j] := f [j + 1]
f [j + 1] := j + 1 (This may be redundant.)

In the binary case, when all mj = 2, the program can be simplified. The directions dj are not
needed, and we simply flip a bit by setting aj := 1 − aj . The test “aj = mj − 1 or aj = 0” is
always true.

3


