The Perron—Frobenius Theorem: Statement

Theorem 1 (The Perron-Frobenius Theorem). Let A € RZS", and assume that A% > 0 for some
K > 1. Then there is a unique A\« > 0 and a vector y, € RY, that is unique up to scaling, with
the following properties:

1. (Root convergence) For every nonzero start vector x(0) ¢ RY,,

lim ¢/ ||AF%ol| = A,
k—oo

where ||| is any norm on R™.
2. (Ratio convergence) For every nonzero start vector x(0) ¢ R%,, and every i =1,...,n,

k4+1,.(0)Y.
lim (AT x);

koo (ARx(0)); = A

3. A« is the eigenvalue of A with the largest absolute value, and A has no other eigenvalue with
this absolute value.

4.y« 18 an eigenvector with eigenvalue A, and it is the only eigenvector with this eigenvalue.

In other words, A\« is an eigenvalue of geometric multiplicity 1. (The algebraic multiplicity
can be higher.)

5. ¥y« 1s the only nonnegative eigenvector.

6. (The Collatz-Wielandt inequalities) Let u € RZ, be any positive vector. Determine numbers
A and X such that the following inequalities hold:

Au < Au < \u

Then A < A < \.

Proof

We start with an easy observation:
Lemma 1. If B is a positive matriz, then u > v and u # v implies Bu > Bv.

Proof. Foralli=1,...,n:
Zbij(uj — Uj) >0,
J

because b;; > 0 and uj; —v; > 0 for all j, and u; — v; > 0 for at least one j. O

Definition 1. For a nonnegative nonzero vector x € R™, we define

Ax);
Amin(X) := max{ A | Ax > Ax } = min ( X)z.
1<i<n

The vector x may contain zeros, and in this case, fractions with denominator 0 in the last term
are interpreted as +o00.

Boundedness. We show that Apin(x) is bounded by the global upper bound

n

M := max E .
1<i<n 4
Jj=1

Proof. Let z;, be the largest entry of x. Then, for every i, (4x); = 2?21 a;jr; < 2?21 a;ijTip <
(Ax); < (Ax)ig < M. ]

T = Tig

Mz;,, and hence Apin(X) = minj<;<yp,

1



Iteration. Take an arbitrary start vector x(*) € R™ with positive entries and consider the itera-
tion x() = Ax(0) x(2) = AxD ete. Let \*) = )\min(x(k)).
Then A®) < A\++1) (easy induction exercise), and since A(*) < M, we can form the limit

M= lim A5,

k—o0

Consider the sequence of normalized vectors:

W x®
B

Yy

Lemma 2. Every accumulation point'y of the sequence yO vy y@ s an eigenvector of A
with eigenvalue \.

Proof. Consider a subsequence y*1) y(#2) y(ks) converging to some accumulation point .
Then the subsequence y*1+1) y(kat1) y(kst+1) = converges also, namely to Ay/||Ay|:. More
generally, the subsequence y*¥1+5) y(ke+K) y(ks+K) " converges to AXy /|| AXy|;.
By definition,
Ay(ki) > )\(ki)y(ki)

for all 7. Taking the limit, we get .
Ay > Ay
The claim of the lemma is that this inequality holds as an equation. Suppose not. Lemma 1
implies 3
AX(4y) > MKy,
or more specifically, .
AR (Ay) = A(ARy) > (A +e)(AXy)
for some £ > 0. Equivalently,
ALy . Ay
ke 2 A e) e 1
[yl = T s, )

Since AKXy /||AXy|; is the limit of the sequence yF1HK) y(ketK) ¢(ks+K)  this implies that
there is some element y*T5) in this sequence which is close enough to the limit AX y/IIAKY 1
such that (1) holds with a small error £/2:

A

Ay FtE) > (X ¢ — g/2)yFtE),

contradicting the fact that Apax(y*iT5)) = AE+K) < ), O

Uniqueness of the eigenvalue. Every nonnegative eigenvector is positive.
Proof. Ay = Ay implies AXy = Ay, and by Lemma 1, AXy is positive. O
All nonnegative eigenvectors have the same eigenvalue, which we denote by A,.

Proof. Assume Ay, = Ay; and Ays = Aoys. Since yo is positive, we can, by rescaling y; if
necessary, assume that y; < yo. It follows that

Moy = AFy, < Afyy = Ay,

for all k, and this implies A\; < Ao. The reverse inequality follows in the same way. O



The Collatz-Wielandt inequalities.

Lemma 3. 1. If Ay > Ay for some nonnegative vector 'y, then A < \,.
In other words, Amin(¥) < A« for all nonnegative vectorsy.
2. If Ay < Ay for some nonnegative vector'y, then A > .

Proof. If we start the iteration with x(® =y, then the assumption means that MO =\ in (X(O)) >
X, and since the sequence \*) converges monotonically to A, A < A0 < \,.
The second inequality follows in an analogous way, using instead of A, the quantity
(AX)z

Amax (%) :=min{ A | Ax < Ax} max .

and arguing that the sequence Apax(x*®)) decreases monotonically.

Corollary 4. There can be no nonnegative vector x with Ax > A\*x.

Uniqueness among nonnegative eigenvectors (claim 5). Suppose y; and ys are two non-
negative vectors with eigenvalue ..

Ayl = )‘*yh
Ay2 - )\*y2
Tterating K times, we get
Ay = \Ey, (2)
Ay, = \Ey,. (3)

We assume for contradiction that ys is not a scalar multiple of ys. Then, by rescaling the
vectors, we can assume that neither y; < ys2 nor y; > yo holds. The elementwise maximum
y := max(y1,y2) is therefore a vector different from y; and ys. Lemma 1 implies

ARy > Ay = Ay,
ARy > Ay, = Ay,
and therefore
ARy > max(\y1, A y2) = ALy,

On the other hand, by applying the previous arguments to AX instead of A, We conclude from
(2) and (3) that AKX is the unique eigenvalue for AX with a positive eigenvector. Therefore, the
Collatz-Wielandt inequality for AX implies that AXy > AX¥ is impossible. O

We denote the unique nonnegative eigenvector of A by y.,.
Uniqueness among arbitrary (complex) eigenvectors (claims 3 and 4). Let z € C" be

an eigenvector with eigenvalue A, or in other words, for every i, \z; = (Az); = 2?21 a;jz;. Taking
absolute values, we get

Al [z =

n n n
D iz < lagzl =Y aijlzl. (4)
j=1 j=1 j=1

In other words, the nonnegative vector x with z; = |z;| fulfills Ax > |A|x, and it follows from
Lemma 3 that |A| < A,.

Let us discuss the case of equality, |[A\| = A\.. Then Ax > |A\.|x. This can only hold with
equality. (Otherwise, Lemma 1 would imply that A(A%x) > |\.|A%x, contradicting Corollary 4.)
Therefore x must be a multiple of the unique nonnegative eigenvector y.. In the application of
the triangle inequality in (4), equality holds only if z is a (complex) multiple of x. It follows that
there is no eigenvector with eigenvalue A, except y, and its scalar multiples.




Ratio convergence (claim 2). The two vectors involved in the quotient are AF+1x(0) —
xE+D = Ax(*) and AFx(® = x(*). Nothing is changed if we replace these vectors by the scaled
vectors Ay(®) and y(®). Since y*) converges to the eigenvector y,, the “elementwise ratio” between
y ) and Ay® converges to .

It does not matter if the start vector x(?) is not positive. The vectors x*) will be positive after
at most K steps, and by cutting out the first K steps, we obtain the same iteration with a positive
start vector.

Root convergence of the individual entries, limy_,, v/(AFx(0)); = \,, is a direct consequence,
and thus it holds also for the norm (claim 1).

Alternative constructions of the eigenvector. We have in fact shown (Lemma 3) that y, is
the vector that maximizes Apin(x) among all nonnegative vectors. Alternatively, it can be defined
as the vector that minimizes A\pax(x) among all nonnegative vectors.



