
The Perron–Frobenius Theorem: Statement

Theorem 1 (The Perron–Frobenius Theorem). Let A ∈ Rn×n
≥0 , and assume that AK > 0 for some

K ≥ 1. Then there is a unique λ∗ > 0 and a vector y∗ ∈ Rn
>0 that is unique up to scaling, with

the following properties:

1. (Root convergence) For every nonzero start vector x(0) ∈ Rn
≥0,

lim
k→∞

k

√
‖Akx0‖ = λ∗,

where ‖·‖ is any norm on Rn.

2. (Ratio convergence) For every nonzero start vector x(0) ∈ Rn
≥0, and every i = 1, . . . , n,

lim
k→∞

(Ak+1x(0))i

(Akx(0))i
= λ∗.

3. λ∗ is the eigenvalue of A with the largest absolute value, and A has no other eigenvalue with
this absolute value.

4. y∗ is an eigenvector with eigenvalue λ∗, and it is the only eigenvector with this eigenvalue.

In other words, λ∗ is an eigenvalue of geometric multiplicity 1. (The algebraic multiplicity
can be higher.)

5. y∗ is the only nonnegative eigenvector.

6. (The Collatz-Wielandt inequalities) Let u ∈ Rn
>0 be any positive vector. Determine numbers

λ and λ such that the following inequalities hold:

λu ≤ Au ≤ λu

Then λ ≤ λ∗ ≤ λ.

Proof

We start with an easy observation:

Lemma 1. If B is a positive matrix, then u ≥ v and u 6= v implies Bu > Bv.

Proof. For all i = 1, . . . , n: ∑
j

bij(uj − vj) > 0,

because bij > 0 and uj − vj ≥ 0 for all j, and uj − vj > 0 for at least one j.

Definition 1. For a nonnegative nonzero vector x ∈ Rn, we define

λmin(x) := max{λ | Ax ≥ λx } = min
1≤i≤n

(Ax)i
xi

.

The vector x may contain zeros, and in this case, fractions with denominator 0 in the last term
are interpreted as +∞.

Boundedness. We show that λmin(x) is bounded by the global upper bound

M := max
1≤i≤n

n∑
j=1

aij .

Proof. Let xi0 be the largest entry of x. Then, for every i, (Ax)i =
∑n

j=1 aijxj ≤
∑n

j=1 aijxi0 ≤
Mxi0 , and hence λmin(x) = min1≤i≤n

(Ax)i
xi
≤ (Ax)i0

xi0
≤M .
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Iteration. Take an arbitrary start vector x(0) ∈ Rn with positive entries and consider the itera-
tion x(1) = Ax(0), x(2) = Ax(1), etc. Let λ(k) := λmin(x(k)).

Then λ(k) ≤ λ(k+1) (easy induction exercise), and since λ(k) ≤M , we can form the limit

λ̃ := lim
k→∞

λ(k).

Consider the sequence of normalized vectors:

y(k) :=
x(k)

‖x(k)‖1

Lemma 2. Every accumulation point ỹ of the sequence y(0),y(1),y(2), . . . is an eigenvector of A
with eigenvalue λ̃.

Proof. Consider a subsequence y(k1),y(k2),y(k3), . . . converging to some accumulation point ỹ.
Then the subsequence y(k1+1),y(k2+1),y(k3+1), . . . converges also, namely to Aỹ/‖Aỹ‖1. More
generally, the subsequence y(k1+K),y(k2+K),y(k3+K), . . . converges to AK ỹ/‖AK ỹ‖1.

By definition,
Ay(ki) ≥ λ(ki)y(ki)

for all i. Taking the limit, we get
Aỹ ≥ λ̃ỹ

The claim of the lemma is that this inequality holds as an equation. Suppose not. Lemma 1
implies

AK(Aỹ) > λ̃AK ỹ,

or more specifically,
AK(Aỹ) = A(AK ỹ) ≥ (λ̃+ ε)(AK ỹ)

for some ε > 0. Equivalently,

A
AK ỹ

‖AK ỹ‖1
≥ (λ̃+ ε)

AK ỹ

‖AK ỹ‖1
(1)

Since AK ỹ/‖AK ỹ‖1 is the limit of the sequence y(k1+K),y(k2+K),y(k3+K), . . . this implies that
there is some element y(ki+K) in this sequence which is close enough to the limit AK ỹ/‖AK ỹ‖1
such that (1) holds with a small error ε/2:

Ay(ki+K) ≥ (λ̃+ ε− ε/2)y(ki+K),

contradicting the fact that λmax(y(ki+K)) = λ(ki+K) ≤ λ̃.

Uniqueness of the eigenvalue. Every nonnegative eigenvector is positive.

Proof. Ay = λy implies AKy = λKy, and by Lemma 1, AKy is positive.

All nonnegative eigenvectors have the same eigenvalue, which we denote by λ∗.

Proof. Assume Ay1 = λ1y1 and Ay2 = λ2y2. Since y2 is positive, we can, by rescaling y1 if
necessary, assume that y1 ≤ y2. It follows that

λk1y1 = Aky1 ≤ Aky2 = λk2y2

for all k, and this implies λ1 ≤ λ2. The reverse inequality follows in the same way.
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The Collatz-Wielandt inequalities.

Lemma 3. 1. If Ay ≥ λy for some nonnegative vector y, then λ ≤ λ∗.
In other words, λmin(y) ≤ λ∗ for all nonnegative vectors y.
2. If Ay ≤ λy for some nonnegative vector y, then λ ≥ λ∗.

Proof. If we start the iteration with x(0) = y, then the assumption means that λ(0) = λmin(x(0)) ≥
λ, and since the sequence λ(k) converges monotonically to λ∗, λ ≤ λ(0) ≤ λ∗.

The second inequality follows in an analogous way, using instead of λmin the quantity

λmax(x) := min{λ | Ax ≤ λx } = max
1≤i≤n

(Ax)i
xi

,

and arguing that the sequence λmax(x(k)) decreases monotonically.

Corollary 4. There can be no nonnegative vector x with Ax > λ∗x.

Uniqueness among nonnegative eigenvectors (claim 5). Suppose y1 and y2 are two non-
negative vectors with eigenvalue λ∗.

Ay1 = λ∗y1,

Ay2 = λ∗y2.

Iterating K times, we get

AKy1 = λK∗ y1, (2)

AKy2 = λK∗ y2. (3)

We assume for contradiction that y2 is not a scalar multiple of y2. Then, by rescaling the
vectors, we can assume that neither y1 ≤ y2 nor y1 ≥ y2 holds. The elementwise maximum
ŷ := max(y1,y2) is therefore a vector different from y1 and y2. Lemma 1 implies

AK ŷ > AKy1 = λK∗ y1,

AK ŷ > AKy2 = λK∗ y2,

and therefore
AK ŷ > max(λK∗ y1, λ

K
∗ y2) = λK∗ ŷ.

On the other hand, by applying the previous arguments to AK instead of A, We conclude from
(2) and (3) that λK∗ is the unique eigenvalue for AK with a positive eigenvector. Therefore, the
Collatz-Wielandt inequality for AK implies that AK ŷ > λK∗ ŷ is impossible.

We denote the unique nonnegative eigenvector of A by y∗.

Uniqueness among arbitrary (complex) eigenvectors (claims 3 and 4). Let z ∈ Cn be
an eigenvector with eigenvalue λ, or in other words, for every i, λzi = (Az)i =

∑n
j=1 aijzj . Taking

absolute values, we get

|λ| · |zi| =

∣∣∣∣∣
n∑

j=1

aijzj

∣∣∣∣∣ ≤
n∑

j=1

|aijzj | =
n∑

j=1

aij |zj |. (4)

In other words, the nonnegative vector x with xi = |zi| fulfills Ax ≥ |λ|x, and it follows from
Lemma 3 that |λ| ≤ λ∗.

Let us discuss the case of equality, |λ| = λ∗. Then Ax ≥ |λ∗|x. This can only hold with
equality. (Otherwise, Lemma 1 would imply that A(AKx) > |λ∗|AKx, contradicting Corollary 4.)
Therefore x must be a multiple of the unique nonnegative eigenvector y∗. In the application of
the triangle inequality in (4), equality holds only if z is a (complex) multiple of x. It follows that
there is no eigenvector with eigenvalue λ∗ except y∗ and its scalar multiples.
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Ratio convergence (claim 2). The two vectors involved in the quotient are Ak+1x(0) =
x(k+1) = Ax(k) and Akx(0) = x(k). Nothing is changed if we replace these vectors by the scaled
vectors Ay(k) and y(k). Since y(k) converges to the eigenvector y∗, the “elementwise ratio” between
y(k) and Ay(k) converges to λ∗.

It does not matter if the start vector x(0) is not positive. The vectors x(k) will be positive after
at most K steps, and by cutting out the first K steps, we obtain the same iteration with a positive
start vector.

Root convergence of the individual entries, limk→∞
k
√

(Akx(0))i = λ∗, is a direct consequence,
and thus it holds also for the norm (claim 1).

Alternative constructions of the eigenvector. We have in fact shown (Lemma 3) that y∗ is
the vector that maximizes λmin(x) among all nonnegative vectors. Alternatively, it can be defined
as the vector that minimizes λmax(x) among all nonnegative vectors.
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