
Making a quadtree balanced in linear time. The algorithm processes the tree
nodes level by level. We will incrementally assign to each node u four neighbor pointers
u.N, u.W, u.S, u.E, pointing to four tree nodes v whose squares are adjacent to u at the
respective side. The side length s(v) of the target of each pointer satisfies the relation

s(v) =


s(u),

s(u)× 2, or

s(u)× 4 (a bad pointer).

A pointer that does not satisfy one of these equations is illegal. Pointers at the boundary
of the bounding box are null (and are regarded as good pointers). As soon as every node
in the whole tree has four good neighbor pointers, the tree must be balanced.

At the beginning of stage t, precisely all tree nodes u up to depth t have neighbor
pointers, and there are no bad pointers. The global procedure is the following loop:

for t = 0, 1, 2, . . .
for every node u at level t:

if u is not a leaf:
set-pointers(u)

The procedure set-pointers(u) sets the neighbor pointers of u’s children as follows:

procedure set-pointers(u):
{ At the beginning, if u is at level ℓ of the tree, all tree nodes at level
up to and including ℓ have only good pointers. }

for v = u.NE, u.NW, u.SW, u.SE:
Set each pointer v.N, v.W, v.S, v.E to the corresponding pointer
from u or to the appropriate sibling node of v.

Let L be the list of bad pointers that have been created.
for each pointer in L:

{ We will subdivide the target square of the pointer if necessary,
and replace the bad pointer by a good pointer. }

More precisely, assume for example that the bad pointer is v.N = w.
{ v is at level ℓ+ 1, and w is at level ℓ− 1 }
if w is a leaf:

Refine w into four subsquares w.NE, w.NW, w.SW, w.SE.
set-pointers(w)

Set v.N := w.SW or w.SE, as appropriate.
{ At the end, all nodes at level up to ℓ have only good pointers. }

Exercises. 1. (16 pointers) Spell out the details how the sixteen neighbor pointers of
the four children of u are set.

2. (4 pointers) Show that L can contain at most 4 bad pointers.

Correctness. By the assumption that holds at the beginning, the neighbor pointers
from u are good, and hence the newly created neighbor pointes from the children v of
u can be bad but not illegal. All bad pointers that are created are replaced by good
pointers before the procedure set-pointers returns.

The algorithm never refines a square if it is not necessary. The runtime is proportional
to the number of tree nodes that exist plus the number of tree nodes that are created.

Variations. The recursion can be replaced by a single stack that contains all bad
pointers. Some further streamlining is possible.

1


