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1 Setup for the Largest Inscribed Triangle

We are given a convex polygon P with n vertices in counterclockwise order. We look for a
triangle ABC of largest area contained in P . It is obvious that the corners A,B,C must lie on
the boundary of P , and hence we speak of an inscribed triangle.
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Our approach is to solve a constrained problem where the direction of the edge BC is
specified. More precisely, for a given direction vector u = u(θ) =

(
cos θ
sin θ

)
, we look for the largest

inscribed triangle among the triangles ABC for which u is the outer normal of the edge BC,
see Figure 2a for an illustration. We call such triangles ABC anchored at u, and we denote the
largest such triangle by A∗B∗C∗ = A∗(θ)B∗(θ)C∗(θ). We always label ABC in counterclockwise
order.

The idea is now to sweep the direction θ through the full range of possible angles and
maintain the triangle A∗(θ)B∗(θ)C∗(θ) along the way. The largest inscribed triangle must be
encountered during this sweep. A nice animation of this process can be seen in [Kal, Figure 1].

It is clear that the corner A∗ is the extreme vertex in direction −u.1 As we rotate the
direction θ counterclockwise, the point A∗(θ) will jump from one vertex to the next in counter-
clockwise direction whenever −u(θ) is the outer normal of a polygon edge. For the other two
points, we have the following crucial properties.

1. The points B∗(θ) and C∗(θ) are unique (Lemma 1).

2. The points B∗(θ) and C∗(θ) move monotonically in counterclockwise direction on the
boundary of the polygon as θ is increased. (Theorem 5.ii.)

We will see how to maintain B∗(θ) and C∗(θ) as θ ranges over the interval [0◦ . . 360◦]. We
have to process a linear number of events, and for each event, we can carry out the elementary
steps and decisions of the process in constant time. Figure 1 shows an example how the area of
A∗(θ)B∗(θ)C∗(θ) varies depending on θ.2 By picking the maximum of this function, we find the
largest inscribed triangle in linear time.

1

θ

P
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3.80

3.85

3.90

4.00

0◦ 90◦ 180◦ 270◦ 360◦
u(θ)

θ

Figure 1: The area F (θ) of the largest θ-anchored triangle A∗(θ)B∗(θ)C∗(θ) as a function of
the direction θ ∈ [0◦ . . 360◦], for the 13-gon P shown on the left. This function is piecewise
smooth and continuous. The dots on the graph are the breakpoints, where the combinatorial
type changes in the sense that a triangle corner moves to a different polygon edge or rests at
a polygon vertex. The red breakpoints correspond to the inner normals of the edges, where
A∗ jumps from one vertex to the next. The largest inscribed triangle in P is highlighted. It
is encountered three times as a maximum of F (θ), namely whenever u(θ) is one of the outer
normals of this triangle. The direction where this happens for the third time is indicated. The
dashed triangle in P corresponds to the three minima of F (θ). We will see in Section 3 that it
determines the smallest circumscribed triangle of P .

1In Kallus [Kal], anchored triangles with this corner A∗ are called “candidate-anchored triangles”. His “an-
chored triangles” are what we call largest anchored triangles.

2This polygon is instance number 18 in the test suite that Kallus [Kal] provided with the source files of his
arXiv preprint and at https://github.com/ykallus/max-triangle/releases/tag/v1.0
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2 Finding the Largest Anchored Triangle

We consider a fixed direction u. We parameterize the triangle A∗BC = A∗B(h)C(h) by the
height h over the side BC, see Figure 2a. For a given height h, the segment B(h)C(h) is
determined as the intersection of the area of P with the line perpendicular to u at distance h
from A∗. The variable h ranges between 0 and the width w(u) of the polygon in direction u. In
particular, if P has an edge with outer normal u, then B(h)C(h) for h = w(u) is equal to that
edge, see Figure 5b. Since this case sometimes requires special arguments, we give it a name:
We call an edge of P the u-extreme edge if its outer normal is u. (For most directions u, there
is no u-extreme edge.)

A∗

B(h)

C(h)

h

w(u)
u = u(θ)

−u

P

A∗

B(h)

C(h)

h

w(u)

−u

P

(a) (b)

Figure 2: (a) Notations for anchored triangles A∗B(h)C(h). (b) Moving A∗ parallel to BC does
not affect the area of A∗BC.

It may happen that A∗ is not unique, namely when the polygon has an edge with outer
normal −u, see Figure 2b. In this case, it does not matter which point A∗ we pick from that
edge: This choice affects neither the definition of B(h) and C(h) nor the area of the triangle
A∗B(h)C(h).

2.1 The Largest Anchored Triangle is Unique

Lemma 1. The function f : [0 . . w(u)]→ R≥0 defined by f(h) = areaA∗B(h)C(h) is continuous
and unimodal : It starts from f(0) = 0 with a strictly increasing part ; it has a unique maximum;
and this is followed by a strictly decreasing part. The decreasing part may be missing.

Proof. 3 The area f(h) = 1
2h|B(h)C(h)| is 1

2 times the product of the height h and the baseline
|B(h)C(h)| of the triangle. Since both factors are continuous between 0 and w(u), f is continuous
as well. Due to the convexity of P , the length g(h) := |B(h)C(h)| is a concave function, and
it consists of a weakly increasing part between h = 0 and some hmax where it achieves the
maximum, and a decreasing part between hmax and w(u). In the first part, f(h) = 1

2h · g(h) is
the product of h with a weakly increasing positive function, and is therefore strictly increasing.
In the second part, we look at the derivative f ′(h) = 1

2(g(h) + h · g′(h)). The function g is not
differentiable everywhere, but we can take the right derivative in this equation. The function g
is strictly decreasing, and the second term is the product of h with a negative piecewise constant

3See [Kal, Lemma 2.2–3] for a different, less elementary proof of the unique maximum property. (The word
“convex” should be replaced by “concave” or “downward convex”.)
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decreasing function. Both terms are strictly decreasing. So the function f ′ is strictly decreasing,
and the function f is strictly concave and therefore unimodal in the second part.

Since f(0) = 0, the increasing part is always present. The decreasing part may be missing
when the polygon P has an edge with outer normal u.

2.2 The Local Problem with a Triangular Outer Polygon

The range of the function f is decomposed into pieces. On each piece, B(h) and C(h) slide
along two fixed edges b and c of P . In order to analyze the behavior of f on one of these pieces,
we first consider the case that B(h) and C(h) range over two lines b and c.

To facilitate the discussion, we assume in this section and whenever it is convenient that θ =
90◦ and u points in the upward direction. This allows us to use the words “above” and “below”,
“up” and “down” with reference to this situation. They have to interpreted appropriately when
u is rotated.

Thus, we are looking for a triangle A∗BC with a horizontal edge BC that lies above A∗,
where B and C are constrained to lie on two upward rays ~b and ~c and C should be to the left
of B, see Figure 3.

Lemma 2. The area of A∗BC is a quadratic function of h. If the rays ~b and ~c don’t meet, then
the area increases indefinitely with h, and there is no largest triangle. Otherwise, the area of
A∗BC has a unique maximum, which is found as follows: let T be the intersection of ~b and ~c.
Then the edge B∗C∗ of the largest triangle goes through the midpoint M of T and A∗.

B(h)C(h)

h

w

A∗

T

~b~c

M = T+A∗

2

Figure 3: The largest anchored triangle restricted by only two edges b and c

Proof. The area f(h) = 1
2h|B(h)C(h)| is 1

2 times the product of the height h and the baseline

|B(h)C(h)| of the triangle. If the rays~b and ~c are parallel or diverge, then it is clear that the area
increases without bounds, since h increases and the baseline |B(h)C(h)| increases or remains
constant.

Otherwise, the length of the baseline B(h)C(h) is proportional to w − h, where w is the
vertical distance between T and A∗. It follows that f(h) = 1

2h|B(h)C(h)| has the form f(h) =
αh(w − h) for some constant α, and this is maximized for h = w/2. This is precisely the value
h where the segment B(h)C(h) goes through the midpoint (T +A∗)/2.
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We call M = (T +A∗)/2 the critical pivot point or simply the critical point. The usefulness
of this lemma results from the way in which the optimality criterion is phrased: When u is
rotated, the critical point remains fixed as long as A∗ remains fixed, whereas w and h change.

2.3 The Direction of Improvement for the Largest Anchored Triangle

C B

eback(C)

eforw(C)

eforw(B) = eback(B) C B
T up

Mup

A∗

(a) (b)

P P

Figure 4: (a) The forward and backward incident edges of a point on the boundary of P .
(b) A possible definition of Mup when BC is an edge of P

We now return to the situation when B and C are restricted to the original polygon P . To
check whether the triangle ABC is largest, we use Lemma 2. If B or C is at a vertex of P , the
function f(h) is not differentiable at this point, and we have to look at its one-sided derivatives.
For a point B (or C) that is a vertex of P , we call its two incident edges the forward edge
eforw(B) and the backward edge eback(B), according to the counterclockwise orientation of P ,
see Figure 4a. If B lies in the interior of an edge e of P , we define eforw(B) and eback(B) to be
that same edge e.

If we consider the behavior of f(h) when h is increased, we have to look at the upward
rays through the two upper incident edges eforw(B) and eback(C). We denote their intersection
by T up, if it exists, and the midpoint between this point and A∗ is the upward critical pivot
point Mup, see Figure 5a. Accordingly we define the downward critical pivot point Mdown by
the rays through the two lower incident edges eback(B) and eforw(C). If neither B nor C is a
vertex of P , then Mup and Mdown coincide. Otherwise, Mup lies below Mdown, despite what the
name suggests!

By Lemma 2, the critical point M , if it exists, gives the direction in which BC has to move
in order to increase the area, according to the following Improvement Test :

If M lies above BC, then h should be increased. (1)

If M lies below BC, then h should be decreased. (2)

As a memory aid, one can remember that BC wants to move close to M .
The intersection T , and hence the critical point M , may not exist, and in that case, h

should be increased if we want to increase the area. In order to avoid clumsy expressions with
case distinctions, we introduce the following way of speaking: if the rays don’t intersect, and
hence the critical point does not exist, we nevertheless declare that “the critical point lies above
BC ”. This convention is consistent with (1) and gives the correct conclusion about the behavior
of f(h).

Lemma 3 (Optimality criterion for an anchored triangle). The inscribed triangle A∗BC with
height h and BC perpendicular to u is the optimum anchored triangle if and only if h > 0 and
the following two conditions are satisfied:

5
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h

Mup

Mdown

T down

A∗

T up

(a)

P

BC

h

ĥ = 2h

Mup

Mdown

T down

A∗

B∗C∗

T up

Â

B̂

(b)

Ĉ

P

u

−u

Figure 5: (a) The optimality criterion for a largest anchored triangle A∗BC. (b) An anchored
circumscribed triangle ÂB̂Ĉ corresponding to a largest anchored inscribed triangle A∗BC.

a) The downward critical point Mdown lies on or above BC (or does not exist).

b) If h does not lie at the maximum of its range,
the upward critical point Mup lies on or below BC.

Proof. The conditions are the necessary conditions for a local maximum of f(h): Condition (a)
looks at the left derivative, and Condition (b) looks at the right derivative. The case when h
is at the maximum of its range is treated specially in Condition (b) because there is no right
derivative. When the critical point lies on the segment BC, the derivative is 0. Nevertheless,
this is sufficient to conclude that the area cannot be increased by moving h in that direction,
since the quadratic function f(h) has then a critical point at h, which is a maximum.

For h→ 0, the area decreases to 0, and hence the optimum must occur at a positive height.
By Lemma 1, the maximum is unique, and therefore the conditions are also sufficient.

We mention that one get an alternative proof of Lemma 1 (uniqueness of B∗ and C∗) by
arguing directly that the necessary conditions (a) and (b) can have at most one solution.4

3 The Smallest Anchored Circumscribed Triangle

We relate the largest inscribed triangle anchored at u to the smallest-area circumscribed triangle
ÂB̂Ĉ among the triangles anchored at −u, in the sense that −u is the outer normal of the

4Consider the points Mup and Mdown as h increases from 0 to the maximum value. After an initial period
where the points don’t exist and therefore Mup and Mdown “lie above” BC, the critical points move downwards
because the edges incident to B and C turn more and more inwards. At the same time the edge BC moves
upwards. Thus, there can be only one point where (a) and (b) are fulfilled and the interval between Mup and
Mdown straddles the segment BC. The precise argument is a bit delicate because of the jumps of Mup and Mdown.

6
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edge B̂Ĉ.5

Lemma 4. i) Let A∗B∗C∗ be a largest inscribed triangle anchored at u, of height h. Then
the smallest circumscribed triangle ÂB̂Ĉ anchored at −u has height ĥ = 2h, and the length
of its baseline is B̂Ĉ = 2 ·B∗C∗, and hence its area is 4 times the area of A∗B∗C∗.

ii) There is always a smallest anchored circumscribed triangle ÂB̂Ĉ such that the side ÂB̂ or
the side ÂĈ touches a whole edge of P .6

Proof. Figure 5b shows how ÂB̂Ĉ is constructed. Again we assume without loss of generality
that u points vertically upward. From an appropriate point Â at height 2h above A∗, we put
tangents to P through the points B∗ and C∗ and we extend these tangents until they meet the
horizontal line through A∗ in the points Ĉ and B̂, respectively. Then B̂Ĉ = 2 · B∗C∗, because
the triangles ÂB̂Ĉ and ÂC∗B∗ are similar and the ratio of their heights is 2.

We must show that a point Â with the desired properties exists. The requirement that the
tangents from Â should touch P in the points B∗ and C∗ restricts Â to the intersection of two
wedges (the shaded area in Figure 5b). Its boundary is formed by at most four edges. By
definition, the lowest point of the region is T up, and from Condition (b) of Lemma 3, this point
exists and lies below the line at height 2h. The highest point is T down, if that point exists, or
otherwise the region is unbounded. Thus, by Condition (a) of Lemma 3, the region extends
above the line at height 2h. Thus, a point Â at height 2h in this region can be found. In
Figure 5b, The possible choices for Â are highlighted.

Choosing Â at the boundary of the allowed region ensures that one side of the triangle
touches a whole edge of P , thus proving the second statement of the lemma.

h

ĥ

A∗

B∗C∗

ĈB̂

Â

Figure 6: An anchored triangle containing A∗B∗C∗

We still need to show that there is no smaller anchored triangle containing P . In fact, there
is not even a smaller anchored triangle that contains just the triangle A∗B∗C∗: This statement
is dual to Lemma 2, and its proof is just as easy, see Figure 6. If we choose the point Â at some
height ĥ, the smallest anchored circumscribed triangle must contain the projection of B̂Ĉ of the
segment C∗B∗ from Â to the horizontal line through A∗, and by similar triangles, the base B̂Ĉ

is ĥ/(ĥ− h) times as long as the segment C∗B∗, and hence the area of ÂB̂Ĉ is 1
2 · ĥ ·

ĥ
ĥ−h

B∗C∗.

The minimum of this expression is achieved for ĥ = 2h.

5The strong connection between the two problems was first explicitly noted and exploited by Chandran and
Mount, see in particular [ChMo, Lemma 2.4 in connection with Lemma 2.5]. The statement of our Lemma 4.i is
discussed after the proof of Lemma 2.4.

6[KlLa, Theorem 2.1.iv].

7



A216

A217

A218

A219

A220

A221

A222

A223

A224

A225

A226

A227

A228

A229

A230

A231

A232

A233

A234

A235

A236

A237

A238

A239

A240

A241

A242

A243

A244

A245

A246

A247

A248

A249

A250

A251

A252

A253

A254

A255

A256

A257

A258

A259

A260

This lemma has a converse7: From a smallest circumscribed triangle ÂB̂Ĉ anchored at −u,
one can recover a largest inscribed triangle A∗B∗C∗ anchored at u. We don’t need this direction,
but for completeness, it is proved in Appendix C (Lemma 12).

The lemma shows that, by computing the area A∗(θ)B∗(θ)C∗(θ) for all directions θ, we can
simultaneously find the smallest circumscribed triangle: Instead of looking for the largest area
among these triangles, we just look for the smallest area, and we multiply the result by 4. (It
is a bit paradoxical that we should look for largest inscribed anchored triangles in order to find
the circumscribed triangle with smallest area.)

4 How B∗ and C∗ Move When the Direction is Rotated

We define the combinatorial type of an inscribed triangle ABC as the specification that tells for
each of the three corners A,B,C on which vertex of P or in the interior of which edge of P it
lies.

Theorem 5. i) The domain of angles θ is partitioned into intervals at breakpoints 0◦ = θ0 <
θ1 < · · · < θi < θi+1 < · · · < θk = 360◦, such that in each open interval (θi . . θi+1),
all triangles A∗(θ)B∗(θ)C∗(θ) have the same combinatorial type. Moreover, in each closed
interval [θi . . θi+1], the edge B∗(θ)C∗(θ) pivots around a point M on this edge.8 There are
three mutually exclusive possibilities, which are illustrated in Figure 7.

I. M = B∗(θ) is stationary at a vertex of P and C∗(θ) moves on a fixed edge of P .

II. M = C∗(θ) is stationary at a vertex of P and B∗(θ) moves on a fixed edge of P .

III. There is a common pivot point Mup = Mdown = M on the segment B∗C∗; B∗(θ) and
C∗(θ) move on two fixed edges of P ; and the segment B∗(θ)C∗(θ) rotates around M .9

ii) Moreover, B∗(θ) and C∗(θ) move continuously and monotonically10 in counterclockwise
direction on the boundary of the polygon P as θ is increased. They make a full turn around
P as θ ranges over the interval [0◦ . . 360◦].

iii) The number k of intervals is at most 5n+ 1.11

In Case III, it may happen that the rotation center lies on an edge of P and hence coincides
with B∗ or C∗, see Figure 8. Then this corner of the triangle remains stationary.

Proof. Consider a generic direction θ and the largest triangle according to Lemma 3. Two cases
can arise:

• If the two points B∗ and C∗ lie in the interior of two edges of P , then Mup = Mdown, and
B∗C∗ must go through this point; this condition does not change as long as B∗ and C∗

remain in the interior of the edges on which they move.

• If one point, B∗ or C∗, lies on a vertex of P and the other one lies in the interior of an
edge, then Mup and Mdown are different, and they remain different provided that the point
B∗ or C∗ which lies at a vertex stays there. The optimality condition remains satisfied as
long as the segment B∗C∗ does not cross Mup or Mdown and as long as the moving point
stays on the same edge.

7cf. [ChMo, Lemma 2.4]
8In the animation shown in [Kal, Figure 1], it is apparent that the optimal edges B∗C∗ go through a common

point when u is rotated in some range.
9See [ChMo, Figure 5], covering the case where the smallest anchored circumscribed triangle has “two flush

legs”. The pivot is the point x in that figure, and it is constructed by considering the local optimality condition
of the circumscribed triangle.

10cf. [OAMB, Lemma 2]. See Appendix D for another proof.
11cf. [ChMo, Lemma 3.1].
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Mdown

Mup

A∗

B∗C∗B∗

A∗

Mup

Mdown

C∗

Case I Case II

M

A∗

B∗C∗

Case III

Figure 7: How the segment B∗C∗ can rotate

C∗ = Mup = Mdown

P

A∗

B∗

E

Figure 8: The pivot point M can lie on the boundary. (If this example is modified by shortening
the edge A∗E so that E coincides with C∗, then the pivot around which the rotation occurs is
still the point C∗, but the characteristic property Mup = Mdown of case III is lost, and we are
in Case II.)

There are degenerate situations which are not covered by these two cases: Both B∗ and C∗

can lie on vertices of P ; or B∗C∗ goes through a critical point M and a vertex of P that is
different from M . (Or both of these situations happen simultaneously.) However, there are only
finitely many potential pivot points and finitely many vertices. Thus, there are only finitely
many directions θ which are not covered by the two cases.

We have therefore proved the first claim of the theorem: The open intervals with the same
combinatorial type cover all angles except for a finite set of breakpoints.

Let us now look at these breakpoints. Figure 7 shows, for each case, the (at most) three
events that compete for terminating the motion or validity of the optimality conditions when
θ increases. One of the moving endpoints B∗ or C∗ might hit the endpoint of its edge, or the
rotating segment might hit one of the pivot points Mup or Mdown. In addition, the point A∗

might jump to the next vertex. Of course, analogous events happen when θ is decreased.
When θ reaches such a breakpoint, the optimality conditions continue to hold. This is

obvious if the rotating segment hits Mup or Mdown. If one of the moving endpoints arrives at a
vertex, then Mup or Mdown may jump. However, such a jump is always in the good direction
which makes the optimality conditions more liberal: Mup will jump to a lower position, and
Mdown will jump higher. Thus, the rotating segment will remain optimal at the boundaries of
the intervals.
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The rotation induces a continuous counterclockwise motion of B∗(θ) and C∗(θ) inside each
interval. The only conceivably discontinuity is when B∗C∗ coincides with the u-extreme edge
of P , as in Figure 4b. However, in this case, it is easy to see that the segment will pivot around
B∗ when θ is increased (see Lemma 7 below), and hence the motion of B∗(θ) is continuous also
here.

Since the closed intervals [θi . . θi+1] overlap, the motion is continuous and monotone through-
out. Since the points B∗(θ) and C∗(θ) cannot overtake A∗(θ) or be overtaken by A∗(θ), they
have to make one complete turn.

Finally, we bound number of breakpoints. We will justify below that at each breakpoint θi,
one or more of the following happen:

a) A∗ jumps.
b) B∗ or C∗ arrives at a vertex as θ approaches θi from the left.
c) B∗ or C∗ moves away from a vertex as θ increases from θi to the right.

The breakpoints where A∗ jumps are easy to count: There are exactly n of them. Each of the
four types of events where B∗ or C∗ arrives or moves away from a vertex can happen at most
once per vertex, for a total of 4n events of these types. The extra +1 in the overall bound 5n+1
on the number of intervals is for the artificial cut at 0◦/360◦.

To justify the claim, consider an endpoint θi of an interval in the circular sweep. If A∗ jumps,
or if B∗ or C∗ was moving and arrives at a vertex, the claim is fulfilled. The only remaining
case is when B∗C∗ rotates around B∗ at a polygon vertex (Case I) and hits the critical point
Mup, or symmetrically, when it rotates around C∗ at a polygon vertex (Case II) and hits Mdown.
Consider without loss of generality the latter case, see the middle picture of Figure 7. Then, if
θ is further increased, the segment B∗C∗ will start to pivot around Mdown and C∗ will move
away from the vertex while B∗ continues to move on its edge. This situation is optimal because
Mdown does not change, and Mup to jumps to Mdown. (We are thus now in Case III. This
analysis is a special case of the Movement Rule that will be stated later in Lemma 7.)

The bound 5n+ 1 is usually an overestimate. Even in a generic situation, an event of type
(b) and an event of type (c) can occur at the same breakpoint. Moreover, a breakpoint need
not manifest itself in the shape of the function F (θ). There are even polygons where F (θ) is
the constant function. One such example, from [BRS, Fig. 3], is the hexagon P with vertices
(3, 0), (3, 3), (0, 3), (−1, 53), (−1, 0), (0,−1).

5 How the Area Changes When the Direction is Rotated

Lemma 6. In each closed interval [θi . . θi+1] where B∗(θ) and C∗(θ) lie on fixed edges, the area
function F (θ) has at most one local minimum.

It has no local maximum in the interior of the interval, unless F (θ) is constant in that
interval.

Proof. The statement is clear if one endpoint is stationary (Cases I and II of Theorem 5): The
point A∗ is also stationary, and the third point moves monotonically on an edge. Hence F (θ) is
either constant, or strictly increasing, or strictly decreasing.

The more interesting case is Case III, when the segment rotates around M . First of all, we
note that areaA∗B∗C∗ = areaTC∗B∗, see Figure 9a: Indeed, the segment B∗C∗ bisects both
the triangle A∗TB∗ and the triangle A∗TC∗, as is easily seen.

We can thus look at the area of TC∗B∗. If we rotate the segment by a small amount ∆θ,
Figure 9b shows how the triangle area changes: It grows on the left side and shrinks on the
right side, by a triangular region in each case. We approximate these regions by circular sectors,
leaving an error of small order (the blue regions in the figure):

F (θ + ∆θ)− F (θ) = ∆(areaTBC) = 1
2 ·∆θ ·

(
|C∗M |2 − |B∗M |2

)
+O(∆θ2)
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Letting ∆θ → 0, one sees that the comparison between |C∗M | and |B∗M | decides about the sign
of the derivative of F . The stationary situation is attained when |C∗M | = |B∗M |. Figure 9c
shows that the unique segment B0C0 through M with this property can be obtained through
symmetry, by reflecting the rays TB∗ and TC∗ at M and intersecting them with the original
rays.

As the segment B∗C∗ rotates counterclockwise around M and the points B∗, C∗ move on
the rays TB∗ and TC∗, respectively, we initially have |C∗M | < |B∗M |, and F (θ) is strictly
decreasing, until we reachB0C0. After this point, |C∗M | > |B∗M | and F (θ) is strictly increasing.

A∗

B∗C∗ M

T

A∗

B∗C∗ M

T

∆θ

A∗

M

T

B0

C0

(a) (b) (c)

Figure 9: (a) areaA∗B∗C∗ = areaTC∗B∗. (b) The area change under rotation of the segment
B∗C∗. (c) The balanced segment B0C0 with |B0M | = |C0M |.

An alternative approach to Lemma 6 might try to prove that the pieces of F (θ) are convex
functions. However, this is not the case, at least in terms of the parameterization by θ. This can
for example be observed (not very conspicuously) at the third piece from the left in Figure 1.

6 How the Motion Continues After a Breakpoint

There is an easy rule that tells how the motion continues when θ is increased. This rule works
irrespective of whether θ is at a breakpoint or not. Suppose we have determined the largest
anchored triangle A∗(θ)B∗(θ)C∗(θ), and we want to increase θ. Assume again for simplicity
that u(θ) points vertically upwards. If A∗ is not unique, we select the rightmost possibility, in
preparation for the increase of θ. Now we construct the intersection T forw of the upward rays
through eforw(B∗) and eforw(C∗), and the forward critical pivot point M forw = (T forw +A∗)/2.

Lemma 7 (The Movement Rule). If θ is increased, the segment B∗C∗ moves as follows, see
Figure 10:

a) If M forw lies on B∗C∗, then B∗C∗ will rotate around this point.

b) If M forw lies below B∗C∗, then B∗C∗ will rotate around B∗.

c) If M forw lies above B∗C∗, then B∗C∗ will rotate around C∗. This includes the case that
M forw does not exist because the upward rays through eforw(B∗) and eforw(C∗) don’t meet.

This rule is consistent with the tendency that B∗C∗ wants to get (or stay) close to M forw.

11



A359

A360

A361

A362

A363

A364

A365

A366

A367

A368

A369

A370

A371

A372

A373

A374

A375

A376

A377

A378

A379

A380

A381

A382

A383

A384

A385

A386

A387

A388

A389

M forw

Mup

A∗

C∗B∗

A∗

M forw

Mdown

C∗

Case (b) Case (c)

A∗

B∗

Case (a)

A∗

M forw = B∗
C∗

Case (a)

C∗C∗
B∗B∗

C∗

C∗
B∗C∗

C∗

C∗

B∗B∗
M forw

Mup

Figure 10: The pivot point around which the segment B∗C∗ rotates. Case (a): an interior point
or B∗ or C∗ (not shown); Case (b): B∗; Case (c): C∗. The labels M forw, Mup, Mdown refer to
the situation before the motion starts. In some cases, it does not matter whether B∗ or C∗ lies
on a vertex or not. This is indicated by dotted variations of the polygon P .

Proof. We prove that the described movement maintains optimality. If B∗C∗ rotates around
B∗, it can be for two reasons: Either we are in Case (b), or M forw coincides with B∗ in Case (a).
In both cases, C∗ will be interior to eforw(C∗) after the rotation starts, eback(C∗) will coincide
with this edge eforw(C∗), and M forw becomes Mup. Thus, Mup will be on B∗C∗, in Case (a),
or below B∗C∗, in Case (b). Mdown stays the same as before. Since B∗C∗ was assumed to be
optimal, Mdown lies on or above B∗C∗, and it remains so since B∗C∗ rotates downwards. Thus
the optimality conditions are preserved.

If B∗C∗ rotates around C∗, the argument holds mutatis mutandis.
Finally, if M forw lies in the interior of B∗C∗ in Case (a) and B∗C∗ rotates around this point,

then Mup = Mdown = M forw after the rotation starts, and optimality is clear.

We mention that the Movement Rule gives the right movement when B∗C∗ coincides with
the u-extreme edge of P : Then T forw = C∗, and M forw lies below B∗C∗. Hence the segment
will rotate around B∗.

7 A Linear-Time Algorithm

It is straightforward to distill a linear-time algorithm for finding the largest anchored triangles
for all directions θ from Lemmas 1 and 14:

We first compute the largest anchored triangle A∗(θ0)B
∗(θ0)C

∗(θ0) for the starting direc-
tion θ0 = 0◦. This triangle can be found in O(log2 n) time12 by nested binary search on the left
and right boundary of P for the optimal height h, using the local optimality criteria of Lemma 3.
Since we are going to spend linear time anyway, and since we need to do this only once for the
initialization, we can instead perform a simple linear scan in linear time.

We increase θ continuously to 360◦ and move the three corners along.13 We imagine this as
a continuous process. We have to watch for three types of events, as described in the proof of
Theorem 5, see Figure 7:

12See [KlLa, Section 2]
13It is actually sufficient to sweep up to 180◦: The largest or smallest triangle ABC will be discovered whenever

u(θ) is the outer normal of one of the three sides of ABC.
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1. A∗ jumps to the next corner.
2. A moving corner B∗ or C∗ arrives at a vertex.
3. The segment B∗C∗ hits a critical point Mup or Mdown.

Whenever this happens, we are at a breakpoint, and we determine how the motion continues
with the help of the Movement Rule of Lemma 7. By Theorem 5.iii, there are O(n) events, and
an event can be processed in O(1) time. Thus, the overall effort is linear.

If we are looking for a largest inscribed triangle, Lemma 6 implies that it is sufficient to
evaluate the area at the breakpoints and take the maximum. If we are looking for a smallest
circumscribed triangle, we additionally have to consider the possibility of an interior local mini-
mum, which is constructed according to Figure 9c for those intervals where B∗C∗ rotates around
an interior point M .

Thus, we have achieved a linear-time algorithm, both for the largest inscribed triangle and
the smallest circumscribed triangle. As we will see in the subsequent sections, there are special
properties of the two problems that allow the algorithm to be simplified.

We can even construct the complete function F (θ), as in Figure 1. It is a continuous piecewise
smooth function with at most 5n+ 1 pieces. It is not hard to see from Figure 9b that each piece
can be written in the form F (θ) = α + β1 tan(θ + γ1) + β2 tan(θ + γ2) for some constants
α, β1, γ1, β2, γ2.

8 Speed-Up for the Largest Inscribed Triangle

It is well-known that the largest triangle has its corners at vertices of P :

Lemma 8. The largest inscribed triangle ABC in a polygon P can be found among the triangles
whose corners A,B,C are among the vertices of P .

Proof. If a corner lies in the interior of an edge, then one can slide it to one of the two endvertices
of this edge without decreasing the area (keeping the other two corners fixed).

Keeping this property in mind, we restrict our attention to points A,B,C that lie on vertices
of P . We can formulate the following

Skipping Principle. When, at any time during the sweep, it becomes known that
B∗(θ) lies on a point B in the interior of an edge pipi+1 of the polygon, or that it
must lie ahead of such a point B, then it is not necessary to increase θ continuously.
We can immediately advance B∗ to the forward endpoint pi+1 of this edge, and
adjust θ accordingly.

The same statement holds for C∗.

8.1 The Skipping Algorithm

This results in the algorithm shown in Figure 11. The algorithm maintains three points A,B,C
that move counterclockwise through the vertices of P . When we say we advance A or B or C we
mean that we move it to the next vertex of P . The next vertex after A is denoted by next(A).
The direction θ does not explicitly appear in the algorithm but we can think of u(θ) as attached
to BC as its normal vector.

The initialization moves A to a vertex, and it advances B and C to the next vertex if B∗(θ0)
or C∗(θ0) lies in the middle of an edge, following the Skipping Principle.

The test (i) ensures that the rest of the loop is not entered before A is at the point A∗(θ)
for the current direction θ. In case of a tie, we advance A in order to be prepared for increasing
θ in step (iv).
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Compute A∗(θ0), B
∗(θ0), and C∗(θ0) for θ0 = 0◦. (Initialization)

set A to the forward endpoint of eback(A∗(θ0))
set B to the forward endpoint of eback(B∗(θ0))
set C to the forward endpoint of eback(C∗(θ0))
maxarea := 0

(∗) while B is not to the left of C: (θ has not completed a half-turn)
(i) if area next(A)BC ≥ areaABC:

advance A. (Move towards the extreme point A∗(θ) in direction −u(θ))
(ii) else if decreasing h would increase the area:

advance C. (Move towards C∗(θ))
(iii) else if increasing h is possible and would increase the area:

advance B. (Move towards B∗(θ))
else: (Now BC = B∗(θ)C∗(θ), and ABC is a candidate for the largest triangle.)

maxarea := max(maxarea, areaABC)
(iv) Determine how the edge B∗C∗ will rotate when θ continues to increase.

It rotates either
around B∗ or
around C∗ or
around a critical pivot point M in the interior of the edge B∗C∗.

Accordingly, either C∗, or B∗, or both points move.
Advance the corresponding point C, or B, or both B and C

Figure 11: The Skipping Algorithm for the largest inscribed triangle

The advancements in steps (ii)–(iv) are justified by the Skipping Principle. The conditions
in steps (ii) and (iii) are checked according to the Improvement Test (conditions (1)–(2)) and the
criteria (a) and (b) of Lemma 3. The test in step (iv) is carried out according to the Movement
Rule (Lemma 7).

The termination condition (∗) will be discussed in Section 8.3.

8.2 Simplifying the Test

The tests (ii)–(iv) can be subsumed in one simple common test:

Construct the point M forw

if M forw lies below BC:
advance C

else if M forw lies on or above BC or M forw does not exist:
advance B

Indeed, by construction, M forw lies higher than Mup and lower than Mdown. Thus, if the test (ii)
succeeds because Mdown lies below BC, then M forw lies below BC and the simplified algorithm
will do the right thing. If the test (iii) succeeds because Mup lies on or above BC, the analogous
argument leads to the same conclusion. (If Mup does not exist then M forw does not exist.)

Finally, let us consider the test (iv). It is carried out when BC = B∗C∗, and hence the Move-
ment Rule (Lemma 7) applies. If M forw does not lie on B∗C∗ (Cases (b) and (c) of Lemma 7),
the segment rotates around one endpoint, and the other endpoint can be advanced. The simpli-
fied algorithm makes the right choice. Finally, if M forw lies on B∗C∗, the simplified algorithm
always advances B, whereas the original Skipping Algorithm would sometimes advance C or
both points. If M forw lies in the interior of B∗C∗, the original Skipping Algorithm advances
both points. Here, the simplified algorithm behaves differently. However, advancing only B is
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still correct since it is justified by the Skipping Principle. (It is simpler to avoid an extra test
and miss a few extra opportunities of advancing a point.)

The only case when there would be a discrepancy between the Skipping Algorithm and the
simplified test is when M forw = B∗ and therefore C should be advanced, see the second example
in Figure 10. However, M forw can coincide with B∗ only if the edge eforw(B∗) extends all the
way down to A∗. Since B∗ = B is a vertex of P , this case is excluded.

The whole loop, together with the advancement of A, becomes extremely simple:

while B is not to the left of C:
while area next(A)BC ≥ areaABC:

advance A
maxarea := max(maxarea, areaABC)
if M forw exists and lies below BC:

advance C
else:

advance B

Since we don’t distinguish whether BC = B∗C∗, we simply take all triangles ABC that we
encounter after the loop (i) as candidates for the largest triangle.

A nice feature of this algorithm, besides a potential speedup, is that the only points B and
C that are ever considered are vertices of the polygon (apart from the initialization step).14

8.3 Correctness, Termination, and Running Time

The Skipping Algorithm starts with θ = 0◦ and rotates the direction until the condition (∗)
indicates termination. This happens when the normal direction falls in the range 180◦ < θ <
360◦. Every triangle has some normal u(θ) in the range 0◦ ≤ θ < 180◦, and thus it is ensured
that the largest inscribed triangle is found before the algorithm terminates.

The termination argument is a little subtle because the three points A,B,C are not always
distinct.

Lemma 9. Assume that P has at least 3 vertices. In the Skipping Algorithm, both in the original
and the simplified version, collisions between the points A,B,C are subject to the following
constraints:

a) The points B and C are always distinct.

b) As the points are advanced, C can catch up with A, and A can catch up with B, but no point
overtakes another point.

c) Consequently, the points A,B,C are always in counterclockwise order whenever they are
distinct.

Proof. We have seen after Lemma 7 that B is not advanced when C = next(B), because this is
the case when BC is the u-extreme edge. It is possible that C catches up with A (even right
after initialization), but then A will immediately advance. So C cannot overtake A.

14This algorithm differs from the algorithm of [Jin] for the largest inscribed triangle only in minor details, apart
from the initialization and the termination condition. Jin’s algorithm is initialized with a 3-stable triangle, and
he shows that such a triangle can be found in linear time by a simple algorithm, which considers only triangles
with vertices from the polygon [Jin, Section 2]. Jin derived his algorithm not as a simplification of the circular
sweep over all anchored triangles, but in a different way.

On a superficial level, the algorithm resembles the incorrect algorithm of Dobkin and Snyder [DS]. However,
that algorithm controls the advancement of B and C by a different criterion, namely the comparison of areas.
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The point A can only catch up with B if B = next(C). This can indeed happen, for example
when P is a triangle. In this situation, the next step will advance B. Thus, B and C remain
always distinct, and A cannot overtake B.

In the original version of the Skipping Algorithm, there is a case when both B and C move
simultaneously, but then the only collision that can happen is that C runs into A, and this case
has been treated above.

Since B and C are always distinct, the segment BC has a well-defined direction.

Lemma 10. The counterclockwise change of direction of the segment BC in one step of the
algorithm is less than 180◦.

Proof. The points B and C can advance only one vertex at a time (perhaps simultaneously, in
the original Skipping Algorithm). Now, consider moving two points B and C forward on the
boundary of a convex region from some starting position B0C0, without B moving past C0 or
C moving past B0, see Figure 12. Then one can turn the segment BC by at most 180◦, and the
only way to reach 180◦ is for B and C to swap places, but this is impossible in one step in a
polygon with more than 2 vertices.

B0

C0

C

B

≤ 180◦

Figure 12: How much BC can rotate in one step

So we know that the direction θ increases from the initial value 0◦ in steps less than 180◦.
Thus it cannot jump over the terminating interval 180◦ < θ < 360◦ in one step. Consequently,
the total counterclockwise turn of the segment BC is less than 360◦.

Termination in linear time is now guaranteed by the fact that each loop iteration advances
one or several of the points A,B,C, and the points cannot overtake each other.

Exercise. 1. True or false:

The loop can be stopped already as soon as A is to the right of B,

(a) because the sequence of triangles starts repeating from this point, with rotated labels
A,B,C;

(b) for a different reason.

2. In case this improved termination condition works: When should it be tested?

9 The Smallest Circumscribed Triangle

Lemma 11. There is a smallest circumscribed triangle that touches a polygon edge.15

Proof. The smallest circumscribed triangle is anchored at some direction u. According to
Lemma 4.ii, there is a smallest circumscribed triangle anchored at that direction with the claimed
property.

15In fact, every smallest circumscribed triangle has this property. This follows from [KlLa, Lemma 1.3], see
also [KlLa, Theorem 2.1.iv].

16



A535

A536

A537

A538

A539

A540

A541

A542

A543

A544

A545

A546

A547

A548

A549

A550

A551

A552

A553

A554

A555

A556

A557

A558

A559

A560

A561

A562

A563

A564

A565

A566

A567

A568

A569

A570

A571

A572

A573

A574

A575

A576

A577

A578

A579

A580

A circumscribed triangle that touches a polygon edge is anchored at the outer normal di-
rection of that edge. Thus it suffices to look at F (θ) for those breakpoints which are inner
normals of polygon edges (where A∗ jumps). In particular, it is not necessary to look for a local
minimum in the interior of an interval, thus simplifying the algorithm described in Section 7.

O’Rourke, Aggarwal, Maddila, and Baldwin [OAMB] have developed an algorithm that
shortcuts the sweep by letting θ jump from one inner normal direction of P to the next. They
solved the difficulties that arise by this discontinuous movement. Like the algorithm in Figure 11,
they maintain two points B and C, and they showed that, after increasing θ, one can approach
B∗(θ) and C∗(θ) step by step by moving either B or C to the next vertex.

This shortcut is similar in spirit to the shortcut of Section 8. The difference is that, in
Section 8, we advance B and C and let u follow. Here, we advance the direction u, and B and
C have to catch up.

A Literature

This note gives a self-contained development of linear-time algorithms for largest inscribed and
the smallest circumscribed triangle, starting from scratch. The essential ideas and inspirations
have been taken from the literature, but I have tried to streamline the presentation for simplicity.
A distinguishing feature of my treatment is the central role that is given to the critical pivot
point M . As discussed in Appendix B.3, the same optimality condition (Lemma 3) appears
in various other guises in the literature. I hope that my presentation may contribute to the
clarification of the ideas underlying the algorithms. I have sprinkled the text with footnotes
that acknowledge sources or clarify clashes of terminology.

I give a brief account of the relevant literature in chronological order, together with the
publication dates.
• Dobkin and Snyder [DS] in 1979 were the first to propose a linear-time algorithm for the

largest inscribed triangle. This algorithm later turned out to be wrong, see below.
• In 1985, Klee and Laskowski [KlLa] developed an algorithm for computing the smallest

circumscribed triangle in O(n log2 n) time.
• Building on this work, O’Rourke, Aggarwal, Maddila, and Baldwin [OAMB] improved this

in 1986 to linear time.
• In 1992, Chandran and Mount [ChMo] noted the strong connection between the largest

inscribed triangle and smallest circumscribed triangle problems, and they succeeded to
solve both problems simultaneously in linear time.
• In 2017, Keikha, Löffler, Urhausen, and van der Hoog noted that the algorithm of Dobkin

and Snyder [DS] does not work, and they presented a counterexample. This was published
in the first version of the arXiv preprint [K+] in May 2017, and they were initially unaware
of the previous linear-time solution of Chandran and Mount [ChMo]. As a replacement
for the incorrect solution, they proposed an algorithm of running time O(n log n) for the
largest inscribed triangle.
• The discovery of the mistake in [DS] prompted two linear-time algorithms that were again

posted as arXiv preprints: By Kallus [Kal], posted in June 2017, and by
• Jin [Jin], whose first version was posted in July 2017. Both papers deal with the largest

inscribed triangle problem. In subsequent versions of [Jin], the smallest circumscribed
triangle problem is also treated.
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B The Improvement Test for Anchored Triangles

The basic operation in the algorithm, besides the calculation and comparison of triangle areas,
is the construction of the critical pivot point M and its comparison to the edge BC, in order to
decide in which direction the “current triangle” should be improved.

Since this operation is tied to the optimality condition of anchored triangles, the same test
occurs in every algorithm that is based on anchored triangles. As we have seen in Section 8.2,
it also appears in Jin’s algorithm, although Jin’s derivation [Jin] does not refer to anchored
triangles at all.

After introducing the wedge product as a basic operation in Section B.1, we develop the
algebra for finding the direction of improvement (Section B.2). In Section B.3, we compare how
this test is expressed geometrically in different papers. In Section B.4, we discuss the degree of
the algebraic expressions that arise when carrying out the primitive operations on a computer.

B.1 The Area of the Parallelogram Spanned by Two Vectors

For two vectors or points ~a1 =
(
x1
y1

)
and ~a2 =

(
x2
y2

)
in the plane, we use the wedge product

notation for the signed area of the parallelogram spanned by ~a1 and ~a2:

~a1 ∧ ~a2 =

∣∣∣∣x1 x2
y1 y2

∣∣∣∣ = x1y2 − x2y1 = ~a1 · (~a2)⊥,

where (~a2)
⊥ denotes counterclockwise rotation by 90◦, and “·” denotes the scalar product.
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B.2 Algebraic Calculation of the Sign of the Derivative of f(h)

We are given the vertices p1, p2, . . . , pn of the convex n-gon P in counterclockwise order. Indices
are modulo n.

We want to calculate the sign of the one-sided derivative of f(h) at some point h. According
to the Improvement Test (conditions (1)–(2)) and the criteria of Lemma 3, this boils down to
constructing the points T and M and testing the position of M with respect to BC.

We specify the test by five parameters: three indices i, j, k, the vector u, and the point A∗.
Their meaning is as follows: B moves on the line through the edge pi, pi+1 and C moves on the
line through the edge pj , pj+1. The current location of the segment BC is specified by one point
pk through which it goes and by the normal direction u (pointing to the right of BC). When
the test is called, the point pk is always one of pi, pi+1, pj , pj+1.

We start by computing the upward vectors ~b = pi+1− pi and ~c = pj − pj+1. We first assume
that both vectors have a nonnegative scalar product with u, and at least one vector has a positive
scalar product with u. We compute the wedge product

D = ~c ∧~b.

If D ≤ 0, the forward extension of ~b and the backward extension of ~c diverge, and the derivative
of f is positive. Otherwise, their intersection point is given by T = T̂ /D with

T̂ = (pj ∧ pj+1) ·~b+ (pi ∧ pi+1) · ~c

This formula can be worked out by solving the system of linear equations, or by computing the
results T ∧~b and T ∧ ~c and comparing them to what they should be.

To test whether T+A∗

2 is above or below BC, we have to check the sign of
(
T+A∗

2 − pk
)
· u,

which, after multiplying the denominator, becomes

S :=
(
T̂ + (A∗ − 2pk)D

)
· u. (3)

The sign of this expression is the sign of the derivative of f(h).
If D < 0, the computed intersection point T lies below A∗, and so does M , but the multi-

plication by D reverses the sign, leading to the correct (positive) sign of S. One can check that
the sign of S is positive also for D = 0. Thus, (3) can be used in all cases, and the sign test of
D is not necessary. The test covers even the case of Mup when i = j and BC is the u-extreme
edge of P . In this case, ~c = −~b, and D = 0. We get T̂ =

(
0
0

)
, and the expression (3) evaluates

to 0, correctly indicating that no improvement is possible by increasing h.
The expression in the large parentheses in (3) has degree 3 in the input variables. When the

test is used in the algorithm, the vector u is typically perpendicular to the next edge incident
to A∗ or to the vector BC between two vertices of P . The expression (3) has thus degree 4 in
the input variables.

B.3 Geometric Constructions of the Improvement Test

It is interesting to see how this test can be expressed geometrically in different ways. In the
algorithms, the test is variously applied to the forward or backward edges incident to B and C.
To abstract from these details I have chosen to illustrate the tests with a smooth convex body P
that has unique tangents everywhere. I have also unified the notation, and I don’t use the same
wording as in the original sources. Figure 13a shows the test as expressed in this note: Is the
critical point M = (A∗ + T )/2 below or above BC?

Figure 13b shows the criterion of Klee and Laskowski [KlLa, Figure 11], see also [OAMB,
Figure 1]: Let h be the height of BC over the tangent Ē at A∗ (which is parallel to BC). Now
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the tangent at C is extended to a point Y that has height 2h. Then the line Y B is formed, and
the question is: Does Y B intersect the polygon P below B or above B?

This example is particularly instructive: Our test starts with the given vertices and edges
and proceeds by intersecting certain lines or drawing lines through certain points, and in the
end, certain distances or locations are compared. In the critical situation, when the outcome
of the test changes, there will be some extra incidence. In Figure 13a, the point T would have
height 2h in the critical situation. Figure 13b performs the construction backwards and makes
the comparison at an intermediate stage: It constructs what the tangent at B should be in the
critical situation, namely the line Y B, and compares it to the actual tangent at B.

This form of the test has the nice feature that it works regardless of whether the upward
tangent rays through B and C meet.

Figure 13c shows the criterion used by Jin [Jin]. It takes the fourth point I of the parallelo-
gram BTCI (without constructing T ), and compares the distances of I and A∗ from BC. This
is obviously equivalent to the test in Figure 13a.

A∗

BC

T

M
B

C

Y

BC

I

T T

2h

h

(a) this note (b) [KlLa] (c) [Jin]

Ē

P P P

A∗ A∗

Figure 13: The different geometric ways of expressing the direction of improvement

B.4 The Degree of the Predicates and Constructions

As we have seen, the Improvement Test boils down to a sign test for a degree-4 polynomial. The
degree is important when predicates are evaluated exactly, because it determines the blow-up of
the involved numbers. The problem statement of the largest inscribed triangle, however, refers
only the computation and comparison of triangle areas, which is an easy degree-2 operation.

All known linear-time algorithms require the Improvement Test in one form or another.
There is an algorithm to compute the largest inscribed triangle in O(n log n) time, which only
compares triangle areas [K+]. Is there a linear-time algorithm that avoids degree-4 predicates?

As for circumscribed triangles, Klee and Laskowski [KlLa] advertise their algorithm for find-
ing all local minima of circumscribed triangles with the following words: “It does not compute
any areas, but relies on a geometric characterization of the local minima and on simple com-
putational steps such as finding intersections of lines.” Actually, for circumscribed triangles,
this is a justified remark, because the area of a triangle that is given by edges is not so nice to
compute as when the vertices are given, and this is reflected in the algebraic degree. Consider
a triangle where each side is specified by two points (xi, yi) and (ui, vi) through which it goes,
for i = 1, 2, 3. Such a triangle, touching three edges of the input polygon P , can arise as a
smallest circumscribed triangle. Its area is the following rational expression whose numerator
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has degree 8 and whose denominator has degree 6:

±

∣∣∣∣∣∣
x1v1 − y1u1 x1 − u1 y1 − v1
x2v2 − y2u2 x2 − u2 y2 − v2
x3v3 − y3u3 x3 − u3 y3 − v3

∣∣∣∣∣∣
2

2 ·
∣∣∣∣x1 − u1 y1 − v1
x2 − u2 y2 − v2

∣∣∣∣ · ∣∣∣∣x2 − u2 y2 − v2
x3 − u3 y3 − v3

∣∣∣∣ · ∣∣∣∣x3 − u3 y3 − v3
x1 − u1 y1 − v1

∣∣∣∣
This formula was calculated with the help of a computer algebra system. To compare two such
areas exactly requires the evaluation of the sign of a degree-14 polynomial in the input variables.

C From the Smallest Anchored Circumscribed Triangle to the
Largest Anchored Inscribed Triangle

Here is the converse statement to Lemma 4.i.

Lemma 12. Let ÂB̂Ĉ be a smallest circumscribed triangle anchored at −u, of height ĥ. Then
the largest inscribed triangle A∗B∗C∗ anchored at u has vertices B∗ = (Â + Ĉ)/2 and C∗ =
(Â+ B̂)/2, and the vertex A∗ lies on the side B̂Ĉ (see Figure 5b). Hence it has height h = ĥ/2,
and the length of its baseline is B∗C∗ = B̂Ĉ/2, and its area is 1/4 of the area of ÂB̂Ĉ.16

The proof hinges on the well-known optimality condition for circumscribed triangles:

Lemma 13. Let ÔX̂Ŷ be a smallest triangle containing a convex polygon P under the constraint
that Ô is fixed and X̂ and Ŷ lie on two given rays emanating from Ô. Then the midpoint
(X̂ + Ŷ )/2 touches P .17

Proof. Clearly, the side X̂Ŷ must touch P . If it does not touch P at the midpoint (X̂ + Ŷ )/2,
then the area can be decreased by tilting the side X̂Ŷ around the vertex where it touches P .
This has been implicitly shown in the proof of Lemma 6, see Figure 9b with TC∗B∗ in the
role of ÔX̂Ŷ . If the side X̂Ŷ touches a side of P , we tilt it around the endpoint closer to the
midpoint.

Proof of Lemma 12. It is obvious that A∗ lies on the side B̂Ĉ. By Lemma 13, applied to
ÔX̂Ŷ = B̂ĈÂ and ÔX̂Ŷ = ĈÂB̂, the midpoints B∗ = (Â + Ĉ)/2 and C∗ = (Â + B̂)/2 of the
two “legs” ÂĈ and ÂB̂ lie in P .

Optimality of A∗B∗C∗ within P follows easily by Lemma 2: An anchored triangle larger
than A∗B∗C∗ cannot even be found in the circumscribed triangle ÂB̂Ĉ ⊇ P .

D An Alternative Proof that B∗ and C∗ Move Monotonically

We have proved the monotone movement of the points B∗(θ) and C∗(θ) as a consequence of
the analysis of the possible local movements at each direction in Theorem 5. We will give an
independent self-contained proof.18

Lemma 14. As θ increases, each of the points B∗(θ) and C∗(θ) moves only in the forward
direction (or stays where it is).

Proof. It is enough to prove monotonicity for some range of directions θ where A∗ is constant.

16Chandran and Mount [ChMo, Lemma 2.4] proved that there is always an “inner triangle” A∗B∗C∗ that
satisfies all the geometric relations stated in Lemma 12, without noting (or caring to state) that A∗B∗C∗ is the
largest anchored inscribed triangle. In a separate lemma [ChMo, Lemma 2.5(ii)], they proved only that the overall
largest inscribed triangle arises as the inner triangle of some (special) smallest anchored circumscribed triangle.

17This condition is in fact also sufficient for optimality in the setting of this lemma, see [KlLa, Lemma 1.2].
18See also the “interspersing property” in [OAMB, Lemma 2]. The “interleaving property” in [K+, Lemma 5]

is similar, but it holds for a different class of triangles, the so-called “3-stable” triangles.
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B1

T up
1

C1

B2C2

A∗

T down
2

∆
P

Tup
1 +A∗

2 = Mup
1

Figure 14: Proof of Lemma 14. In this example, θ1 < θ2. The proof works equally when the
opposite relation holds.

It is impossible that none of B∗ and C∗ moves forward, because then the segment B∗C∗ would
stay the same or turn clockwise while its supposed normal direction u(θ) turns counterclockwise.

Thus, we are left to exclude the case that one of the points B∗ and C∗ moves backward
and the other moves forward. If this happens, then there are two values θ1 6= θ2 such that the
four points B1 = B∗(θ1), C1 = C∗(θ1), B2 = B∗(θ2), C2 = C∗(θ2) are distinct and occur in the
clockwise order B1B2C2C1 on the boundary, see Figure 14.

Let us look at the edges eforw(B1) and eback(C1). By the optimality criterion, their upward
extensions intersect in some point T up

1 , and the critical pivot point Mup
1 = (T up

1 +A∗)/2 lies on
or below the line B1C1. The edges eback(B2) and eforw(C2) lie between eforw(B1) and eback(C1)
in the cyclic order, with equality permitted. Hence, their intersection point T down

2 lies in the
triangle B1C1T

up
1 . This restricts the critical pivot point Mdown

2 = (T down
2 + A∗)/2 of A∗B2C2

to a smaller triangle ∆ that is dilated from the center A∗ with a factor 1
2 . The triangle ∆ has

its top vertex at Mup
1 , and its lower edge is parallel to B1C1. It follows that Mdown

2 lies on or
below B1C1, and therefore strictly below B2C2, and hence B2C2 is not optimal.

As a consequence of this lemma, one can conclude that the motion of B∗(θ) and C∗(θ) is
continuous, because a discontinuity would be inconsistent with monotonicity, given that the
direction changes continuously. The case when B∗C∗ is the u-extreme edge of P must be
considered separately for this argument.

Continuity can also be established directly from basic properties of the underlying optimiza-
tion problem [Kal, Lemma 3.2].

We have used continuity as part of Theorem 5 only to establish monotonicity, but otherwise,
the algorithm does not depend on continuity. However, if continuity can be assumed, this would
simplify some arguments in the proof of Theorem 5.
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