Forbidden submatrices

Benjamin Aram Berendsohn

$$
\text { July 9, } 2020
$$

Forbidden submatrices

- Only 0-1 matrices in this talk
- Notation: 1s as •, 0s omitted:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
\bullet & & \\
& \bullet & \bullet \\
& \bullet & \bullet
\end{array}\right)
$$

- No empty rows/columns

Definitions

A 0-1 matrix M contains a 0-1 matrix P if P can be obtained from M by deleting rows, columns, and turning 1 s into 0 s.

Definitions

A 0-1 matrix M contains a 0-1 matrix P if P can be obtained from M by deleting rows, columns, and turning 1 s into 0 s .

Example:

$$
\left(\begin{array}{llll}
\bullet & & & \bullet \\
& \bullet & \bullet & \\
& \bullet & \bullet & \bullet
\end{array}\right) \text { contains }\left(\begin{array}{ll}
\bullet & \bullet \\
\bullet & \bullet
\end{array}\right)
$$

Definitions

A 0-1 matrix M contains a 0-1 matrix P if P can be obtained from M by deleting rows, columns, and turning 1 s into 0 s .

Example:

$$
\left(\begin{array}{llll}
\bullet & & & \bullet \\
& \bullet & \bullet & \\
& \bullet & \bullet & \bullet
\end{array}\right) \text { contains }\left(\begin{array}{ll}
\bullet & \bullet \\
\bullet & \bullet
\end{array}\right)
$$

Definitions

A 0-1 matrix M contains a 0-1 matrix P if P can be obtained from M by deleting rows, columns, and turning 1 s into 0 s .

Example:

$$
\left(\begin{array}{llll}
\bullet & & & \bullet \\
& \bullet & \bullet & \\
& \bullet & \bullet & \bullet
\end{array}\right) \text { contains }\left(\begin{array}{ll}
\bullet & \bullet \\
\bullet & \bullet
\end{array}\right) \text { and }\left(\begin{array}{lll}
\bullet & & \bullet \\
& \bullet &)
\end{array}\right.
$$

Definitions

A 0-1 matrix M contains a 0-1 matrix P if P can be obtained from M by deleting rows, columns, and turning 1 s into 0 s .

Example:

$$
\left(\begin{array}{llll}
\bullet & & & \bullet \\
& \bullet & \bullet & \\
& \bullet & \bullet & \bullet
\end{array}\right) \text { contains }\left(\begin{array}{ll}
\bullet & \bullet \\
\bullet & \bullet
\end{array}\right) \text { and }\left(\begin{array}{lll}
\bullet & & \bullet \\
& \bullet &)
\end{array}\right.
$$

Definitions

A 0-1 matrix M contains a 0-1 matrix P if P can be obtained from M by deleting rows, columns, and turning 1 s into 0 s .

Example:

$$
\left(\begin{array}{llll}
\bullet & & & \bullet \\
& \bullet & \bullet & \\
& \bullet & \bullet & \bullet
\end{array}\right) \text { contains }\left(\begin{array}{ll}
\bullet & \bullet \\
\bullet & \bullet
\end{array}\right) \text { and }\left(\begin{array}{lll}
\bullet & & \bullet \\
& \bullet &
\end{array}\right) \text {, avoids }\left(\begin{array}{l}
\bullet \\
\bullet \\
\bullet
\end{array}\right)
$$

Definitions \& simple facts

The weight $|M|$ of a $0-1$ matrix M is the number of 1-entries in it.
Let $\operatorname{Ex}(n, P)$ be the maximum weight in a $n \times n 0-1$ matrix avoiding P.

Definitions \& simple facts

The weight $|M|$ of a $0-1$ matrix M is the number of 1-entries in it.
Let $\operatorname{Ex}(n, P)$ be the maximum weight in a $n \times n 0-1$ matrix avoiding P.

- $\operatorname{Ex}(n,(\bullet))=0$

Definitions \& simple facts

The weight $|M|$ of a $0-1$ matrix M is the number of 1-entries in it.
Let $\operatorname{Ex}(n, P)$ be the maximum weight in a $n \times n 0-1$ matrix avoiding P.

- $\operatorname{Ex}(n,(\bullet))=0$
- $\operatorname{Ex}(n,(\bullet \bullet))=$

Definitions \& simple facts

The weight $|M|$ of a $0-1$ matrix M is the number of 1-entries in it.
Let $\operatorname{Ex}(n, P)$ be the maximum weight in a $n \times n 0-1$ matrix avoiding P.

- $\operatorname{Ex}(n,(\bullet))=0$
- $\operatorname{Ex}(n,(\bullet \bullet))=n$

Definitions \& simple facts

The weight $|M|$ of a $0-1$ matrix M is the number of 1-entries in it. Let $\operatorname{Ex}(n, P)$ be the maximum weight in a $n \times n 0-1$ matrix avoiding P.

- Ex $(n,(\bullet))=0$
- $\operatorname{Ex}(n,(\bullet \bullet))=n$
- $\operatorname{Ex}(n,(\bullet \bullet \bullet))=2 n, \operatorname{Ex}(n,(\bullet \bullet \bullet \bullet))=3 n, \ldots$
- Ex $(n, P) \geq n$ if $P \neq(\bullet)$.

Definitions \& simple facts

The weight $|M|$ of a $0-1$ matrix M is the number of 1-entries in it. Let $\operatorname{Ex}(n, P)$ be the maximum weight in a $n \times n 0-1$ matrix avoiding P.

- Ex $(n,(\bullet))=0$
- $\operatorname{Ex}(n,(\bullet \bullet))=n$
- $\operatorname{Ex}(n,(\bullet \bullet \bullet))=2 n, \operatorname{Ex}(n,(\bullet \bullet \bullet \bullet))=3 n, \ldots$
- Ex $(n, P) \geq n$ if $P \neq(\bullet)$.
- What other matrix patterns are linear?
[Füredi and Hajnal 1992; Keszegh 2009]

Reductions

Use reductions between matrix patterns:

- Rotation and reflection doesn't change anything, e.g.

$$
\begin{aligned}
& \operatorname{Ex}\left(n,\binom{\bullet}{\bullet}\right)=\operatorname{Ex}\left(n,\left(\begin{array}{ll}
\bullet & \bullet
\end{array}\right)\right) \\
& \operatorname{Ex}\left(n,\left(\begin{array}{lll}
\bullet & \bullet & \\
& \bullet & \bullet
\end{array}\right)\right)=\operatorname{Ex}\left(n,\left(\begin{array}{lll}
& \bullet & \bullet \\
\bullet & \bullet
\end{array}\right)\right)
\end{aligned}
$$

Reductions

Use reductions between matrix patterns:

- Rotation and reflection doesn't change anything, e.g.

$$
\begin{aligned}
& \operatorname{Ex}\left(n,\binom{\bullet}{\bullet}\right)=\operatorname{Ex}\left(n,\left(\begin{array}{ll}
\bullet & \bullet
\end{array}\right)\right) \\
& \operatorname{Ex}\left(n,\left(\begin{array}{lll}
\bullet & \bullet & \\
& \bullet & \bullet
\end{array}\right)\right)=\operatorname{Ex}\left(n,\left(\begin{array}{lll}
\bullet & \bullet & \bullet
\end{array}\right)\right)
\end{aligned}
$$

- Removing a 1-entry can only reduce $\mathrm{Ex}(n, P)$, e.g.

$$
\operatorname{Ex}\left(n,\left(\begin{array}{lll}
\bullet & \bullet & \\
& \bullet & \bullet
\end{array}\right)\right) \geq \operatorname{Ex}\left(n,\left(\begin{array}{lll}
\bullet & & \\
& \bullet & \bullet
\end{array}\right)\right)
$$

Reductions

Proposition. Ex $\left(n,\left(\begin{array}{ll}\bullet & \\ \bullet & \bullet\end{array}\right)\right) \leq 2 n$.
Proof by reduction to $(\bullet \bullet)$:

Reductions

Proposition. $\operatorname{Ex}\left(n,\left(\begin{array}{ll}\bullet & \\ \bullet & \bullet\end{array}\right)\right) \leq 2 n$.
Proof by reduction to $(\bullet \bullet)$:

- Let M avoid (\bullet)

Reductions

Proposition. Ex $\left(n,\left(\begin{array}{ll}\bullet & \\ \bullet & \bullet\end{array}\right)\right) \leq 2 n$.
Proof by reduction to $(\bullet \bullet)$:

- Let M avoid $\left(\begin{array}{ll}\bullet & \\ \bullet & \bullet\end{array}\right)$
- Remove the highest 1-entry in each column $\rightarrow M^{\prime}$
- M^{\prime} avoids $(\bullet \bullet) \Longrightarrow\left|M^{\prime}\right| \leq n$

Reductions

Proposition. $\operatorname{Ex}\left(n,\left(\begin{array}{ll}\bullet & \\ \bullet & \bullet\end{array}\right)\right) \leq 2 n$.
Proof by reduction to $(\bullet \bullet)$:

- Let M avoid ($\left.\begin{array}{ll}\bullet & \\ \bullet & \bullet\end{array}\right)$
- Remove the highest 1-entry in each column $\rightarrow M^{\prime}$
- M^{\prime} avoids $(\bullet \bullet) \Longrightarrow\left|M^{\prime}\right| \leq n$
- $|M| \leq\left|M^{\prime}\right|+n \leq 2 n$. \square

Reductions

Proposition. Ex $\left(n,\left(\begin{array}{ll}\bullet & \\ \bullet & \bullet\end{array}\right)\right) \leq 2 n$.
Proof by reduction to $(\bullet \bullet)$:

- Let M avoid $\left(\begin{array}{ll}\bullet & \\ \bullet & \bullet\end{array}\right)$
- Remove the highest 1-entry in each column $\rightarrow M^{\prime}$
- M^{\prime} avoids $(\bullet \bullet) \Longrightarrow\left|M^{\prime}\right| \leq n$
- $|M| \leq\left|M^{\prime}\right|+n \leq 2 n . \square$
- Idea: Adding a 1-entry at the "boundary" of P does not increase Ex very much.

Reductions

Lemma. [Füredi and Hajnal 1992] Let P be a matrix pattern. Consider a 1 in the topmost row of P, and add a 1 directly above it to obtain P^{\prime}.
Then $\operatorname{Ex}(n, P) \leq \operatorname{Ex}\left(n, P^{\prime}\right)+n$.

- Example: $\left(\begin{array}{llll}? & ? & \bullet & ? \\ ? & ? & ? & ? \\ ? & ? & ? & ?\end{array}\right) \rightarrow\left(\begin{array}{llll}? & & \bullet & \\ ? & ? & \bullet & ? \\ ? & ? & ? & ? \\ ? & ? & ? & ?\end{array}\right)$

Reductions

Lemma. [Füredi and Hajnal 1992] Let P be a matrix pattern.
Consider a 1 in the topmost row of P, and add a 1 directly above it to obtain P^{\prime}.
Then $\operatorname{Ex}(n, P) \leq \operatorname{Ex}\left(n, P^{\prime}\right)+n$.

- Example: $\left(\begin{array}{llll}? & ? & \bullet & ? \\ ? & ? & ? & ? \\ ? & ? & ? & ?\end{array}\right) \rightarrow\left(\begin{array}{llll}? & & \bullet & \\ ? & ? & \bullet & ? \\ ? & ? & ? & ? \\ ? & ? & ? & ?\end{array}\right)$
- Types of reduction: rotation/reflection, removing 1-entry, adding 1-entry at boundary.

Small linear patterns

All weight-3 patterns are linear.

Small linear patterns

- Reductions: at least 22 of the 37 weight- 4 patterns are linear. [Füredi and Hajnal 1992]

Small linear patterns

- Reductions: at least 22 of the 37 weight- 4 patterns are linear. [Füredi and Hajnal 1992]
- 3 more are linear. [Tardos 2005]
- The rest are non-linear: $\Theta(n \alpha(n)), \Theta(n \log n)$, or $\Theta\left(n^{3 / 2}\right)$.

$$
\left(\begin{array}{llll}
\bullet & \bullet & \\
& \bullet & & \bullet
\end{array}\right) \ll\left(\begin{array}{llll}
\bullet & & \bullet & \\
& \bullet & & \bullet
\end{array}\right) \ll\left(\begin{array}{lll}
\bullet & \bullet & \\
\bullet & & \bullet
\end{array}\right) \ll\left(\begin{array}{ll}
\bullet & \bullet \\
\bullet & \bullet
\end{array}\right)
$$

Small linear patterns

- Reductions: at least 22 of the 37 weight- 4 patterns are linear. [Füredi and Hajnal 1992]
- 3 more are linear. [Tardos 2005]
- The rest are non-linear: $\Theta(n \alpha(n)), \Theta(n \log n)$, or $\Theta\left(n^{3 / 2}\right)$.

$$
\left(\begin{array}{llll}
\bullet & \bullet & \\
& \bullet & & \bullet
\end{array}\right) \ll\left(\begin{array}{llll}
\bullet & & \bullet & \\
& \bullet & & \bullet
\end{array}\right) \ll\left(\begin{array}{lll}
\bullet & \bullet & \\
\bullet & & \bullet
\end{array}\right) \ll\left(\begin{array}{ll}
\bullet & \bullet \\
\bullet & \bullet
\end{array}\right)
$$

- More reductions are known [Keszegh 2009]
- Weight-5 patterns not completely understood.

Large patterns

- Light patterns (one entry per column): $2^{\alpha^{\Theta(1)}(n)} n$. [Klazar 2001; Keszegh 2009]

Large patterns

- Light patterns (one entry per column): $2^{\alpha^{\Theta(1)}(n)} n$. [Klazar 2001; Keszegh 2009]
- Füredi-Hajnal conjecture: Permutation matrices (one entry per row and column) are linear.
- Implies the Stanley-Wilf conjecture [Martin Klazar 2000]
- Proven in 2004 by Marcus and Tardos.

Marcus-Tardos Theorem

Theorem. If P is a $k \times k$ permutation matrix, then $\operatorname{Ex}(n, P) \in \mathcal{O}(n)$. [Marcus and Tardos 2004; Zeilberger 2003]

Marcus-Tardos Theorem

Theorem. If P is a $k \times k$ permutation matrix, then $\mathrm{Ex}(n, P) \in \mathcal{O}(n)$. [Marcus and Tardos 2004; Zeilberger 2003]

- Divide M into a grid of $k^{2} \times k^{2}$ cells.

Marcus-Tardos Theorem - Heavy cells

- A heavy cell has $>(k-1)^{2}$ entries and is...
- high if it has entries in $\geq k$ distinct rows;
- wide if it has entries in $\geq k$ distinct columns.

Marcus-Tardos Theorem - Heavy cells

- A heavy cell has $>(k-1)^{2}$ entries and is...
- high if it has entries in $\geq k$ distinct rows;
- wide if it has entries in $\geq k$ distinct columns.
- Claim: At most $k\binom{k^{2}}{k}$ high cells per grid row.
- High cells have $\binom{k^{2}}{k}$ choices for their k rows.

Marcus-Tardos Theorem - Heavy cells

- A heavy cell has $>(k-1)^{2}$ entries and is...
- high if it has entries in $\geq k$ distinct rows;
- wide if it has entries in $\geq k$ distinct columns.
- Claim: At most $k\binom{k^{2}}{k}$ high cells per grid row.
- High cells have $\binom{k^{2}}{k}$ choices for their k rows.
- Suppose claim is false $\Longrightarrow k$ cells with the same choice:

Marcus-Tardos Theorem - Heavy cells

- A heavy cell has $>(k-1)^{2}$ entries and is...
- high if it has entries in $\geq k$ distinct rows;
- wide if it has entries in $\geq k$ distinct columns.
- Claim: At most $k\binom{k^{2}}{k}$ high cells per grid row.
- High cells have $\binom{k^{2}}{k}$ choices for their k rows.
- Suppose claim is false $\Longrightarrow k$ cells with the same choice:

- Contains every $k \times k$ permutation matrix. Ex.

Marcus-Tardos Theorem - Heavy cells

- Each grid column contains at most $k\binom{k^{2}}{k}$ wide cells.

Marcus-Tardos Theorem - Heavy cells

- Each grid column contains at most $k\binom{k^{2}}{k}$ wide cells.
- At most $2 \frac{n}{k^{2}} k\binom{k^{2}}{k} \in \mathcal{O}(n)$ heavy cells

Marcus-Tardos Theorem - Heavy cells

- Each grid column contains at most $k\binom{k^{2}}{k}$ wide cells.
- At most $2 \frac{n}{k^{2}} k\binom{k^{2}}{k} \in \mathcal{O}(n)$ heavy cells
- At most $k^{4} \in \mathcal{O}(1)$ entries per heavy cell:
- Heavy cells contribute $\mathcal{O}(n)$ entries.

Marcus-Tardos Theorem - Light cells

Light cells: $\leq(k-1)^{2}$ entries. Consider all non-empty cells:

P

Marcus-Tardos Theorem - Light cells

Light cells: $\leq(k-1)^{2}$ entries. Consider all non-empty cells:

P

Marcus-Tardos Theorem - Light cells

Light cells: $\leq(k-1)^{2}$ entries. Consider all non-empty cells:

P

Marcus-Tardos Theorem - Light cells

Light cells: $\leq(k-1)^{2}$ entries. Consider all non-empty cells:

- At most $\mathrm{Ex}\left(n / k^{2}, P\right)$ non-empty cells
\Longrightarrow Light cells contribute $(k-1)^{2} \mathrm{Ex}\left(n / k^{2}, P\right)$.

Marcus-Tardos Theorem - Light cells

Light cells: $\leq(k-1)^{2}$ entries. Consider all non-empty cells:

P

- At most $\operatorname{Ex}\left(n / k^{2}, P\right)$ non-empty cells \Longrightarrow Light cells contribute $(k-1)^{2} \mathrm{Ex}\left(n / k^{2}, P\right)$.
- $\operatorname{Ex}(n, P) \leq(k-1)^{2} \operatorname{Ex}\left(n / k^{2}, P\right)+\mathcal{O}(n)$

$$
\Longrightarrow \operatorname{Ex}(n, P) \in \mathcal{O}(n) .
$$

Applications I

- Algorithm for L_{1}-shortest paths with polgonal obstacles. [Mitchell 1987]

Applications I

- Algorithm for L_{1}-shortest paths with polgonal obstacles. [Mitchell 1987]
- Unit distances in a convex Polygon. [Füredi 1990]

Applications I

- Algorithm for L_{1}-shortest paths with polgonal obstacles. [Mitchell 1987]
- Unit distances in a convex Polygon. [Füredi 1990]

Applications II

- Path compression in trees (e.g. union-find) [Pettie 2010a]

Applications II

- Path compression in trees (e.g. union-find) [Pettie 2010a]

- Self-adjusting binary search trees (geometric BST model)
[Pettie 2010a; Chalermsook et al. 2015; Kozma 2016]
- ... and more in discrete and computational geometry
[Pettie 2010b]

Bibliography I

固 Parinya Chalermsook et al．（July 24，2015）．＂Pattern－avoiding access in binary search trees＂．In：arxiv e－prints．
Zoltán Füredi（1990）．＂The maximum number of unit distances in a convex n－gon．＂In：J．Comb．Theory，Ser．A 55．2，pp．316－320．
R Zoltán Füredi and Péter Hajnal（1992）．＂Davenport－Schinzel theory of matrices＂．In：Discrete Mathematics 103．3，pp．233－251．
國 Balázs Keszegh（2009）．＂On linear forbidden submatrices＂．In： Journal of Combinatorial Theory，Series A 116．1，pp．232－241．
图 M Klazar（2001）．＂Enumerative and extremal combinatorics of a containment relation of partitions and hypergraphs＂．PhD thesis． Habilitation thesis．
國 Martin Klazar（2000）．＂The Füredi－Hajnal conjecture implies the Stanley－Wilf conjecture＂．In：Formal power series and algebraic combinatorics．Springer，pp．250－255．
：László Kozma（2016）．＂Binary search trees，rectangles and patterns＂．PhD thesis．

Bibliography II

囯 Adam Marcus and Gábor Tardos（2004）．＂Excluded permutation matrices and the Stanley－Wilf conjecture＂．In：Journal of Combinatorial Theory，Series A 107．1，pp．153－160．
－in Joseph S．B．Mitchell（1987）．Shortest rectilinear paths among obstacles．Tech．rep．Cornell University Operations Research and Industrial Engineering．
图 Seth Pettie（2010a）．＂Applications of Forbidden 0－1 Matrices to Search Tree and Path Compression－Based Data Structures＂．In： Proceedings of the 2010 Annual ACM－SIAM Symposium on Discrete Algorithms，pp．1457－1467．
囯－（2010b）．＂On Nonlinear Forbidden 0－1 Matrices：A Refutation of a Füredi－Hajnal Conjecture＂．In：Proceedings of the 2010 Annual ACM－SIAM Symposium on Discrete Algorithms，pp．875－885．
囯 Gábor Tardos（2005）．＂On 0－1 matrices and small excluded submatrices＂．In：Journal of Combinatorial Theory，Series A 111．2，pp．266－288．

Bibliography III

E Doron Zeilberger (2003). A Loving Rendition of the Marcus-Tardos Amazing Proof of the Füredi-Hajnal Conjecture. The Personal Journal of Shalosh B. Ekhad and Doron Zeilberger.

