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Forbidden submatrices

I Only 0-1 matrices in this talk

I Notation: 1s as •, 0s omitted:1 0 0
0 1 1
0 1 1

→
• • •

• •


I No empty rows/columns



Definitions

A 0-1 matrix M contains a 0-1 matrix P if P can be obtained from
M by deleting rows, columns, and turning 1s into 0s.
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Definitions & simple facts

The weight |M| of a 0-1 matrix M is the number of 1-entries in it.

Let Ex(n,P) be the maximum weight in a n × n 0-1 matrix
avoiding P.

I Ex(n,
(
•
)
) = 0

I Ex(n,
(
• •

)
) =

I Ex(n,
(
• • •

)
) = 2n,Ex(n,

(
• • • •

)
) = 3n, . . .

I Ex(n,P) ≥ n if P 6=
(
•
)
.

I What other matrix patterns are linear?
[Füredi and Hajnal 1992; Keszegh 2009]
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Reductions

Use reductions between matrix patterns:

I Rotation and reflection doesn’t change anything, e.g.
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Reductions

Proposition. Ex(n,

(
•
• •

)
) ≤ 2n.

Proof by reduction to
(
• •

)
:

I Let M avoid

(
•
• •

)
I Remove the highest 1-entry in each column → M ′

I M ′ avoids
(
• •

)
=⇒ |M ′| ≤ n

I |M| ≤ |M ′|+ n ≤ 2n. �

I Idea: Adding a 1-entry at the “boundary” of P does not
increase Ex very much.
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Reductions

Lemma. [Füredi and Hajnal 1992] Let P be a matrix pattern.
Consider a 1 in the topmost row of P, and add a 1 directly above
it to obtain P ′.
Then Ex(n,P) ≤ Ex(n,P ′) + n.

I Example:

? ? • ?
? ? ? ?
? ? ? ?

→


•
? ? • ?
? ? ? ?
? ? ? ?



I Types of reduction: rotation/reflection, removing 1-entry,
adding 1-entry at boundary.
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Small linear patterns
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Small linear patterns

I Reductions: at least 22 of the 37 weight-4 patterns are linear.
[Füredi and Hajnal 1992]

I 3 more are linear. [Tardos 2005]

I The rest are non-linear: Θ(nα(n)), Θ(n log n), or Θ(n3/2). •
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I More reductions are known [Keszegh 2009]

I Weight-5 patterns not completely understood.
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Large patterns

I Light patterns (one entry per column): 2α
Θ(1)(n)n.

[Klazar 2001; Keszegh 2009]

I Füredi-Hajnal conjecture: Permutation matrices (one entry
per row and column) are linear.
I Implies the Stanley-Wilf conjecture [Martin Klazar 2000]
I Proven in 2004 by Marcus and Tardos.
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Marcus-Tardos Theorem

Theorem. If P is a k × k permutation matrix, then
Ex(n,P) ∈ O(n). [Marcus and Tardos 2004; Zeilberger 2003]

P

k2

M

I Divide M into a grid of k2 × k2 cells.
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Marcus-Tardos Theorem – Heavy cells

I A heavy cell has > (k − 1)2 entries and is...
I high if it has entries in ≥ k distinct rows;
I wide if it has entries in ≥ k distinct columns.

I Claim: At most k
(k2

k

)
high cells per grid row.

I High cells have
(k2

k

)
choices for their k rows.

I Suppose claim is false =⇒ k cells with the same choice:

· · · · · · · · ·

I Contains every k × k permutation matrix. Ex.
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Marcus-Tardos Theorem – Heavy cells

I Each grid column contains at most k
(k2

k

)
wide cells.

I At most 2 n
k2 k
(k2

k

)
∈ O(n) heavy cells

I At most k4 ∈ O(1) entries per heavy cell:

I Heavy cells contribute O(n) entries.
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Light cells: ≤ (k − 1)2 entries. Consider all non-empty cells:

P M M ′ : n/k2 × n/k2

I At most Ex(n/k2,P) non-empty cells
=⇒ Light cells contribute (k − 1)2 Ex(n/k2,P).

I Ex(n,P) ≤ (k − 1)2 Ex(n/k2,P) +O(n)
=⇒ Ex(n,P) ∈ O(n).
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I Unit distances in a convex Polygon. [Füredi 1990]
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Applications II

I Path compression in trees (e.g. union-find) [Pettie 2010a]

time

nodes

I Self-adjusting binary search trees (geometric BST model)
[Pettie 2010a; Chalermsook et al. 2015; Kozma 2016]

I ... and more in discrete and computational geometry
[Pettie 2010b]
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