Radon and Tverberg Numbers

Mittagsseminar 30 July 2020

Radon number

The smallest number r such that every set of that size can be partitioned into two sets with intersecting convex hulls. r = d + 2 in \mathbb{R}^d .

Radon number

The smallest number r such that every set of that size can be partitioned into two sets with intersecting convex hulls.

r = d + 2 in \mathbb{R}^d .

Tverberg number

The smallest number r_k such that every set of that size can be partitioned into k sets with intersecting convex hulls. $r_k = (d+1)(k-1) + 1$ in \mathbb{R}^d .

- ▶ Ø, *X* ∈ *C*
- ► $A \cap B \in C$ for every $A, B \in C$

- ▶ $\emptyset, X \in C$
- ► $A \cap B \in C$ for every $A, B \in C$
- elements of C are called convex sets

- ► Ø, X ∈ C
- ► $A \cap B \in C$ for every $A, B \in C$
- elements of C are called convex sets
- example: (\mathbb{R}^d, C^d) where C^d represents the set of convex sets in Euclidean space

- ▶ Ø, X ∈ C
- ► $A \cap B \in C$ for every $A, B \in C$
- elements of C are called convex sets
- example: (\mathbb{R}^d, C^d) where C^d represents the set of convex sets in Euclidean space
- example: (\mathbb{Z}^d, L^d) where $L^d = \{\mathbb{Z}^d \cap C \mid C \in C^d\}$

- ▶ Ø, X ∈ C
- ► $A \cap B \in C$ for every $A, B \in C$
- elements of C are called convex sets
- example: (\mathbb{R}^d, C^d) where C^d represents the set of convex sets in Euclidean space
- example: (\mathbb{Z}^d, L^d) where $L^d = \{\mathbb{Z}^d \cap C \mid C \in C^d\}$
- For Y ⊂ X convex hull conv_C(Y) is the intersection of all elements of C that contain Y

- ▶ Ø, X ∈ C
- ► $A \cap B \in C$ for every $A, B \in C$
- elements of C are called convex sets
- example: (\mathbb{R}^d, C^d) where C^d represents the set of convex sets in Euclidean space
- ▶ example: (\mathbb{Z}^d, L^d) where $L^d = \{\mathbb{Z}^d \cap C \mid C \in C^d\}$
- For Y ⊂ X convex hull conv_C(Y) is the intersection of all elements of C that contain Y
- ▶ a convex set $H \in C$ is a half-space if $X \setminus H \in C$

- ▶ Ø, X ∈ C
- ► $A \cap B \in C$ for every $A, B \in C$
- elements of C are called convex sets
- example: (\mathbb{R}^d, C^d) where C^d represents the set of convex sets in Euclidean space
- ▶ example: (\mathbb{Z}^d, L^d) where $L^d = \{\mathbb{Z}^d \cap C \mid C \in C^d\}$
- For Y ⊂ X convex hull conv_C(Y) is the intersection of all elements of C that contain Y
- ▶ a convex set $H \in C$ is a half-space if $X \setminus H \in C$
- space is separable if for every convex set c ∈ C and b ∈ X \ c there is a half-space H such that c ⊂ H and b ∉ H

 $C = \{U \subset V \mid \text{subtree on } U \text{ is connected}\}$

▶ for *G* a group with identity *e*, the space

 $(G \setminus \{e\}, H \setminus \{e\} : H \leq G)$

 $C = \{U \subset V \mid \text{subtree on } U \text{ is connected}\}$

▶ for *G* a group with identity *e*, the space

$$(G \setminus \{e\}, H \setminus \{e\} : H \leq G)$$

- more examples with lattices, linear extensions of posets, cylinders...
- examples taken from [Moran-Yehudayoff, On weak
 ϵ-nets and the Radon number]

 $C = \{U \subset V \mid \text{subtree on } U \text{ is connected}\}$

▶ for *G* a group with identity *e*, the space

$$(G \setminus \{e\}, H \setminus \{e\} : H \leq G)$$

- more examples with lattices, linear extensions of posets, cylinders...
- Radon and Tverberg numbers for Convexity spaces?

for (X, C): size of smallest subset of X that can be partitioned with interesecting convex hulls (according to C)

- for (X, C): size of smallest subset of X that can be partitioned with interesecting convex hulls (according to C)
- ▶ *r* may not exist, example $(X, 2^X)$ when $|X| \to \infty$

- ▶ for (X, C): size of smallest subset of X that can be partitioned with interesecting convex hulls (according to C)
- ▶ *r* may not exist, example $(X, 2^X)$ when $|X| \to \infty$

- ▶ for (\mathbb{Z}^d, L^d) (lattice convex sets), $2^d \leq r = O(d2^d)$ [Onn, 1991]
- for cylinders on $\{0,1\}^n$, $r = \Theta(\log n)$

- ▶ for (X, C): size of smallest subset of X that can be partitioned with interesecting convex hulls (according to C)
- ▶ *r* may not exist, example $(X, 2^X)$ when $|X| \to \infty$

- ▶ for (\mathbb{Z}^d, L^d) (lattice convex sets), $2^d \leq r = O(d2^d)$ [Onn, 1991]
- for cylinders on $\{0,1\}^n$, $r = \Theta(\log n)$
- what about r_k?

•
$$(\mathbb{R}^d, C^d)$$
: $r = d + 2$ and
 $r_k = (d+1)(k-1) + 1 = (r-1)(k-1) + 1$

•
$$(\mathbb{R}^d, C^d)$$
: $r = d + 2$ and
 $r_k = (d+1)(k-1) + 1 = (r-1)(k-1) + 1$

Eckhoff's conjecture: is $r_k \leq (r-1)(k-1) + 1$ always?

•
$$(\mathbb{R}^d, C^d)$$
: $r = d + 2$ and
 $r_k = (d+1)(k-1) + 1 = (r-1)(k-1) + 1$

Eckhoff's conjecture: is $r_k \leq (r-1)(k-1) + 1$ always?

▶ [Jamison, 1981] true for r = 3. r_k always exists when r exists,

$$r_k \leq r^{\lceil \log_2 k \rceil} \leq (2k)^{\log_2 r}$$

using the recursion $r_{k\ell} \leq r_k r_\ell$

•
$$(\mathbb{R}^d, C^d)$$
: $r = d + 2$ and
 $r_k = (d+1)(k-1) + 1 = (r-1)(k-1) + 1$

- Eckhoff's conjecture: is $r_k \leq (r-1)(k-1) + 1$ always?
- ▶ [Jamison, 1981] true for r = 3. r_k always exists when r exists,

$$r_k \leq r^{\lceil \log_2 k \rceil} \leq (2k)^{\log_2 r}$$

using the recursion $r_{k\ell} \leq r_k r_\ell$

▶ [Bukh, 2010] disproved the conjecture for an example with r = 4 and $r_k \ge 3k - 1$

•
$$(\mathbb{R}^d, C^d)$$
: $r = d + 2$ and
 $r_k = (d+1)(k-1) + 1 = (r-1)(k-1) + 1$

- Eckhoff's conjecture: is $r_k \leq (r-1)(k-1) + 1$ always?
- ▶ [Jamison, 1981] true for r = 3. r_k always exists when r exists,

$$r_k \leq r^{\lceil \log_2 k \rceil} \leq (2k)^{\log_2 r}$$

using the recursion $r_{k\ell} \leq r_k r_\ell$

▶ [Bukh, 2010] disproved the conjecture for an example with r = 4 and $r_k \ge 3k - 1$

• upper bound $r_k = O(k^2 \log^2 k)$, constant depends on r

Dömötör Pálvölgyi

• if a convexity space (X, C) has radon number r, then $r_k \leq c(r) \cdot k$

Dömötör Pálvölgyi

if a convexity space (X, C) has radon number r, then r_k ≤ c(r) ⋅ k
 ...c(r) = r^{r^{rlog r}}

Dömötör Pálvölgyi

if a convexity space (X, C) has radon number r, then r_k ≤ c(r) ⋅ k
 ...c(r) = r^{r^{log r}}

Zuzana Patáková

If C is a family of sets in ℝ^d with topological complexity at most b, then r ≤ f(b, d)

Dömötör Pálvölgyi

if a convexity space (X, C) has radon number r, then r_k ≤ c(r) ⋅ k
 ...c(r) = r^{r^{rlog r}}

Zuzana Patáková

- if C is a family of sets in ℝ^d with topological complexity at most b, then r ≤ f(b, d)
- topological complexity depends on the Betti number of the intersections of elements of C
- eg. families of convex sets, good covers, pseudospheres, some families of semi-algebraics sets

Given a collection convex sets in \mathbb{R}^d , if every (d + 1)-tuple has a non-empty intersection, then all sets intersect.

Given a collection convex sets in \mathbb{R}^d , if every (d + 1)-tuple has a non-empty intersection, then all sets intersect.

Radon's theorem is used to prove Helly's theorem

Given a collection convex sets in \mathbb{R}^d , if every (d + 1)-tuple has a non-empty intersection, then all sets intersect.

- Radon's theorem is used to prove Helly's theorem
- there is also a connection in the setting of convexity spaces

Given a collection convex sets in \mathbb{R}^d , if every (d + 1)-tuple has a non-empty intersection, then all sets intersect.

- Radon's theorem is used to prove Helly's theorem
- there is also a connection in the setting of convexity spaces

Fractional Helly Theorem [Holmsen and Lee, 2019] Let (X, C) be a convexity space with radon number r. For each $\alpha \in (0, 1)$ there exists an integer m(r) and $\beta(\alpha, r)$ such that

 α -fraction of *m*-tuples of *C* intersect

 $\implies \beta$ -fraction of elements of *C* intersect

Given a collection convex sets in \mathbb{R}^d , if every (d + 1)-tuple has a non-empty intersection, then all sets intersect.

- Radon's theorem is used to prove Helly's theorem
- there is also a connection in the setting of convexity spaces

Fractional Helly Theorem [Holmsen and Lee, 2019] Let (X, C) be a convexity space with radon number r. For each $\alpha \in (0, 1)$ there exists an integer m(r) and $\beta(\alpha, r)$ such that

 α -fraction of *m*-tuples of *C* intersect

 $\implies \beta$ -fraction of elements of *C* intersect

a colorful Helly theorem is proven in the process

Given a collection convex sets in \mathbb{R}^d , if every (d + 1)-tuple has a non-empty intersection, then all sets intersect.

- Radon's theorem is used to prove Helly's theorem
- there is also a connection in the setting of convexity spaces

Fractional Helly Theorem [Holmsen and Lee, 2019] Let (X, C) be a convexity space with radon number r. For each $\alpha \in (0, 1)$ there exists an integer m(r) and $\beta(\alpha, r)$ such that

 α -fraction of *m*-tuples of *C* intersect

 $\implies \beta$ -fraction of elements of *C* intersect

a colorful Helly theorem is proven in the process
 m(r) ~ r^{r^{[log}2 r]}

Given a collection convex sets in \mathbb{R}^d , if every (d + 1)-tuple has a non-empty intersection, then all sets intersect.

- Radon's theorem is used to prove Helly's theorem
- there is also a connection in the setting of convexity spaces

Fractional Helly Theorem [Holmsen and Lee, 2019] Let (X, C) be a convexity space with radon number r. For each $\alpha \in (0, 1)$ there exists an integer m(r) and $\beta(\alpha, r)$ such that

 α -fraction of *m*-tuples of *C* intersect

 $\implies \beta$ -fraction of elements of *C* intersect

- a colorful Helly theorem is proven in the process
 m(r) ~ r<sup>r^[log2 r]
 </sup>
- Dömötör's result uses this theorem

Given a collection convex sets in \mathbb{R}^d , if every (d + 1)-tuple has a non-empty intersection, then all sets intersect.

- Radon's theorem is used to prove Helly's theorem
- there is also a connection in the setting of convexity spaces

Fractional Helly Theorem [Holmsen and Lee, 2019] Let (X, C) be a convexity space with radon number r. For each $\alpha \in (0, 1)$ there exists an integer m(r) and $\beta(\alpha, r)$ such that

 α -fraction of *m*-tuples of *C* intersect

 $\implies \beta$ -fraction of elements of *C* intersect

- a colorful Helly theorem is proven in the process
 m(r) ~ r<sup>r^[log2 r]
 </sup>
- Dömötör's result uses this theorem
- Zuzana's result together with this gives a new result

For (X, C), let |X| = tk; show that if t ≥ c(r) then a k-partition exists

- For (X, C), let |X| = tk; show that if t ≥ c(r) then a k-partition exists
- Construct F: choose s ≪ t; F is family of convex sets that are convex hulls of s-element subsets of X

- For (X, C), let |X| = tk; show that if t ≥ c(r) then a k-partition exists
- Construct F: choose s ≪ t; F is family of convex sets that are convex hulls of s-element subsets of X
- Theorem: for a certain β , $\beta \binom{tk}{s}$ members of F intersect

- For (X, C), let |X| = tk; show that if t ≥ c(r) then a k-partition exists
- Construct F: choose s ≪ t; F is family of convex sets that are convex hulls of s-element subsets of X
- Theorem: for a certain β , $\beta\binom{tk}{s}$ members of F intersect
- consider the hypergraph on vertices of X whose edges are the members of F from above: if there are k (vertex) disjoint edges, the result follows

- For (X, C), let |X| = tk; show that if t ≥ c(r) then a k-partition exists
- Construct F: choose s ≪ t; F is family of convex sets that are convex hulls of s-element subsets of X
- Theorem: for a certain β , $\beta \binom{tk}{s}$ members of F intersect
- consider the hypergraph on vertices of X whose edges are the members of F from above: if there are k (vertex) disjoint edges, the result follows
- ► assume there are at most k − 1 disjoint edges: this gives an upper bound on the size of the hypergraph ...

- For (X, C), let |X| = tk; show that if t ≥ c(r) then a k-partition exists
- Construct F: choose s ≪ t; F is family of convex sets that are convex hulls of s-element subsets of X
- Theorem: for a certain β , $\beta\binom{tk}{s}$ members of F intersect
- consider the hypergraph on vertices of X whose edges are the members of F from above: if there are k (vertex) disjoint edges, the result follows
- ► assume there are at most k − 1 disjoint edges: this gives an upper bound on the size of the hypergraph ...
- ...but that is less than $\beta\binom{tk}{s}$, a contradiction (values of s, t matter here)

• To show: β -fraction of the members of F intersect

• To show: β -fraction of the members of F intersect

• pick m = m(r) and α

- To show: β -fraction of the members of F intersect
- pick m = m(r) and α
- consider the collection of *m*-tuples of *F*; to show: α-fraction of this collection intersects, so that fractional helly theorem applies and least β-fraction of *F* intersects

- To show: β -fraction of the members of F intersect
- pick m = m(r) and α
- consider the collection of *m*-tuples of *F*; to show: α-fraction of this collection intersects, so that fractional helly theorem applies and least β-fraction of *F* intersects
 - almost all *m*-tuples are vertex disjoint, restrict attention only to these. Further, group tuples by the *ms* elements supporting them

- To show: β -fraction of the members of F intersect
- pick m = m(r) and α
- consider the collection of *m*-tuples of *F*; to show: α-fraction of this collection intersects, so that fractional helly theorem applies and least β-fraction of *F* intersects
 - almost all *m*-tuples are vertex disjoint, restrict attention only to these. Further, group tuples by the *ms* elements supporting them
 - ▶ randomly partition *ms* elements into sets V_1, \ldots, V_f $(f = \frac{s}{r_m})$, so that V_i contains mr_m elements. Consider *m*-tuples x_1, \ldots, x_m such that for each *i*, x_i contains exactly r_m elements from each of V_1, \ldots, V_f .

- To show: β -fraction of the members of F intersect
- pick m = m(r) and α
- consider the collection of *m*-tuples of *F*; to show: α-fraction of this collection intersects, so that fractional helly theorem applies and least β-fraction of *F* intersects
 - almost all *m*-tuples are vertex disjoint, restrict attention only to these. Further, group tuples by the *ms* elements supporting them
 - ▶ randomly partition *ms* elements into sets V_1, \ldots, V_f $(f = \frac{s}{r_m})$, so that V_i contains mr_m elements. Consider *m*-tuples x_1, \ldots, x_m such that for each *i*, x_i contains exactly r_m elements from each of V_1, \ldots, V_f .
 - ► the first r_m (≤ r^{log₂ m}, trivial radon bound) elements of V_i can be partitioned into m sets and distributed to x₁,..., x_m. The remaining elements of V_i are distributed arbitrarily. The m-tuple hence intersects.

- To show: β -fraction of the members of F intersect
- pick m = m(r) and α
- consider the collection of *m*-tuples of *F*; to show: α-fraction of this collection intersects, so that fractional helly theorem applies and least β-fraction of *F* intersects
 - almost all *m*-tuples are vertex disjoint, restrict attention only to these. Further, group tuples by the *ms* elements supporting them
 - ▶ randomly partition *ms* elements into sets V_1, \ldots, V_f $(f = \frac{s}{r_m})$, so that V_i contains mr_m elements. Consider *m*-tuples x_1, \ldots, x_m such that for each *i*, x_i contains exactly r_m elements from each of V_1, \ldots, V_f .
 - ► the first r_m (≤ r^{log₂ m}, trivial radon bound) elements of V_i can be partitioned into m sets and distributed to x₁,..., x_m. The remaining elements of V_i are distributed arbitrarily. The m-tuple hence intersects.
- choosing the proper values for s, m, t, α makes sure everything works out

open questions

▶ can
$$c(r) \le r^{r^{\log r}}$$
 be made linear in r?