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Tverberg number

The smallest number r, such that every set of that size can be
partitioned into k sets with intersecting convex hulls.
re=(d+1)(k—1)+1in R9.
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elements of C are called convex sets

example: (RY, C?) where C? represents the set of convex sets
in Euclidean space

example: (Z9, L9) where LY = {79 N C| C € C%}

for Y C X convex hull conv¢(Y) is the intersection of all
elements of C that contain Y

a convex set H € C is a half-space if X\ H e C

space is separable if for every convex set c € C and b € X\ ¢
there is a half-space H such that cC Hand b ¢ H
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for T =(V,E), space (V, C) where

C = {U C V | subtree on U is connected}

for G a group with identity e, the space

(G\{e},H\{e} : H<G)

more examples with lattices, linear extensions of posets,
cylinders...

examples taken from [Moran-Yehudayoff, On weak e-nets and
the Radon number]

Radon and Tverberg numbers for Convexity spaces?
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» for (X, C): size of smallest subset of X that can be partitioned
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> r may not exist, example (X, 2%) when |X| — oo
» for (V,C) (tree), r =4

» for (Z9, L9) (lattice convex sets), 2¢ < r = O(d29) [Onn,
1991]

» for cylinders on {0,1}", r = ©(log n)

» what about r?
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bounds on ry

» (R, CY): r=d+2 and
ne=d+1)(k—1)+1=(r—1)(k—1)+1

» Eckhoff’s conjecture: is ry < (r — 1)(k — 1) 4+ 1 always?
» [Jamison, 1981] true for r = 3. ry always exists when r exists,
re < ekl < (2k)log2 7
using the recursion rip < riry

» [Bukh, 2010] disproved the conjecture for an example with
r=4and r, >3k—1

> upper bound r, = O(k?log? k), constant depends on r
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new results at CG Week

Domotor Palvolgyi
» if a convexity space (X, C) has radon number r, then
re < c(r)-k

log r

> c(r)=r"

Zuzana Patakova
> if Cis a family of sets in RY with topological complexity at
most b, then r < f(b, d)
» topological complexity depends on the Betti number of the
intersections of elements of C
P> eg. families of convex sets, good covers, pseudospheres, some
families of semi-algebraics sets
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Helly's theorem
Given a collection convex sets in R?, if every (d + 1)-tuple has a
non-empty intersection, then all sets intersect.

» Radon’s theorem is used to prove Helly's theorem

> there is also a connection in the setting of convexity spaces

Fractional Helly Theorem [Holmsen and Lee, 2019]

Let (X, C) be a convexity space with radon number r. For each
a € (0,1) there exists an integer m(r) and (a, r) such that

a-fraction of m-tuples of C intersect

= [-fraction of elements of C intersect

» a colorful Helly theorem is proven in the process
logo r

> m(r) ~ rr[ g2 r]

> DOmotor's result uses this theorem

P> Zuzana's result together with this gives a new result
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proof idea

» for (X, C), let |X| = tk; show that if t > ¢(r) then a
k-partition exists

» construct F: choose s < t; F is family of convex sets that are
convex hulls of s-element subsets of X

» Theorem: for a certain f3, B(tsk) members of F intersect

» consider the hypergraph on vertices of X whose edges are the
members of F from above: if there are k (vertex) disjoint
edges, the result follows

P assume there are at most k — 1 disjoint edges: this gives an
upper bound on the size of the hypergraph ...

» .. .but that is less than 5(2") a contradiction (values of s, t
matter here)
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» To show: p-fraction of the members of F intersect
» pick m = m(r) and «

» consider the collection of m-tuples of F; to show: a-fraction of
this collection intersects, so that fractional helly theorem
applies and least (-fraction of F intersects

» almost all m-tuples are vertex disjoint, restrict attention only to
these. Further, group tuples by the ms elements supporting

them

» randomly partition ms elements into sets Vi,..., V¢ (f = ),
so that V; contains mr, elements. Consider m-tuples xi, ..., Xm
such that for each i, x; contains exactly r,, elements from each
of \/17...,\/,6.

> the first r, (< r'og&2m trivial radon bound) elements of V; can
be partitioned into m sets and distributed to xi,...,x,. The
remaining elements of V; are distributed arbitrarily. The m-tuple
hence intersects.

» choosing the proper values for s, m, t, &« makes sure everything
works out



open questions

P algorithmic questions

log r

be made linear in r?

r

» can c(r) < r'

» extension to colorful Tverberg?



