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Radon number
The smallest number r such that every set of that size can be
partitioned into two sets with intersecting convex hulls.
r = d + 2 in Rd .

Tverberg number
The smallest number rk such that every set of that size can be
partitioned into k sets with intersecting convex hulls.
rk = (d + 1)(k − 1) + 1 in Rd .
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Convexity spaces

A pair (X ,C) where X is a ground set and C ⊂ 2X , with
I ∅,X ∈ C
I A ∩ B ∈ C for every A,B ∈ C

I elements of C are called convex sets
I example: (Rd ,Cd ) where Cd represents the set of convex sets

in Euclidean space
I example: (Zd , Ld ) where Ld = {Zd ∩ C | C ∈ Cd}
I for Y ⊂ X convex hull convC (Y ) is the intersection of all

elements of C that contain Y
I a convex set H ∈ C is a half-space if X \ H ∈ C
I space is separable if for every convex set c ∈ C and b ∈ X \ c

there is a half-space H such that c ⊂ H and b 6∈ H
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More examples

I (X , 2X )

I for T = (V ,E ), space (V ,C) where

C = {U ⊂ V | subtree on U is connected}

I for G a group with identity e, the space

(G \ {e},H \ {e} : H ≤ G)

I more examples with lattices, linear extensions of posets,
cylinders...

I examples taken from [Moran-Yehudayoff, On weak ε-nets and
the Radon number]

I Radon and Tverberg numbers for Convexity spaces?
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r and rk for convexity spaces

I for (X ,C): size of smallest subset of X that can be partitioned
with interesecting convex hulls (according to C)

I r may not exist, example (X , 2X ) when |X | → ∞

I for (V ,C) (tree), r = 4

I for (Zd , Ld ) (lattice convex sets), 2d ≤ r = O(d2d ) [Onn,
1991]

I for cylinders on {0, 1}n, r = Θ(log n)

I what about rk?
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bounds on rk

I (Rd ,Cd ): r = d + 2 and
rk = (d + 1)(k − 1) + 1 = (r − 1)(k − 1) + 1

I Eckhoff’s conjecture: is rk ≤ (r − 1)(k − 1) + 1 always?

I [Jamison, 1981] true for r = 3. rk always exists when r exists,

rk ≤ r dlog2 ke ≤ (2k)log2 r

using the recursion rk` ≤ rk r`

I [Bukh, 2010] disproved the conjecture for an example with
r = 4 and rk ≥ 3k − 1

I upper bound rk = O(k2 log2 k), constant depends on r
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new results at CG Week

Dömötör Pálvölgyi
I if a convexity space (X ,C) has radon number r , then

rk ≤ c(r) · k

I ...c(r) = r r r log r

Zuzana Patáková
I if C is a family of sets in Rd with topological complexity at

most b, then r ≤ f (b, d)
I topological complexity depends on the Betti number of the

intersections of elements of C
I eg. families of convex sets, good covers, pseudospheres, some

families of semi-algebraics sets
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Helly’s theorem
Given a collection convex sets in Rd , if every (d + 1)-tuple has a
non-empty intersection, then all sets intersect.

I Radon’s theorem is used to prove Helly’s theorem
I there is also a connection in the setting of convexity spaces

Fractional Helly Theorem [Holmsen and Lee, 2019]
Let (X ,C) be a convexity space with radon number r . For each
α ∈ (0, 1) there exists an integer m(r) and β(α, r) such that

α-fraction of m-tuples of C intersect
=⇒ β-fraction of elements of C intersect

I a colorful Helly theorem is proven in the process
I m(r) ∼ r rdlog2 re

I Dömötör’s result uses this theorem
I Zuzana’s result together with this gives a new result
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proof idea

I for (X ,C), let |X | = tk; show that if t ≥ c(r) then a
k-partition exists

I construct F : choose s � t; F is family of convex sets that are
convex hulls of s-element subsets of X

I Theorem: for a certain β, β
(tk

s
)
members of F intersect

I consider the hypergraph on vertices of X whose edges are the
members of F from above: if there are k (vertex) disjoint
edges, the result follows

I assume there are at most k − 1 disjoint edges: this gives an
upper bound on the size of the hypergraph ...

I ...but that is less than β
(tk

s
)
, a contradiction (values of s, t

matter here)
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I To show: β-fraction of the members of F intersect

I pick m = m(r) and α
I consider the collection of m-tuples of F ; to show: α-fraction of

this collection intersects, so that fractional helly theorem
applies and least β-fraction of F intersects
I almost all m-tuples are vertex disjoint, restrict attention only to

these. Further, group tuples by the ms elements supporting
them

I randomly partition ms elements into sets V1, . . . ,Vf (f = s
rm
),

so that Vi contains mrm elements. Consider m-tuples x1, . . . , xm
such that for each i , xi contains exactly rm elements from each
of V1, . . . ,Vf .

I the first rm (≤ r log2 m, trivial radon bound) elements of Vi can
be partitioned into m sets and distributed to x1, . . . , xm. The
remaining elements of Vi are distributed arbitrarily. The m-tuple
hence intersects.

I choosing the proper values for s,m, t, α makes sure everything
works out
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open questions

I algorithmic questions

I can c(r) ≤ r r r log r
be made linear in r?

I extension to colorful Tverberg?


