Radon and Tverberg Numbers

Mittagsseminar 30 July 2020

Radon number

The smallest number r such that every set of that size can be partitioned into two sets with intersecting convex hulls. $r=d+2$ in \mathbb{R}^{d}.

Radon number

The smallest number r such that every set of that size can be partitioned into two sets with intersecting convex hulls. $r=d+2$ in \mathbb{R}^{d}.

Tverberg number
The smallest number r_{k} such that every set of that size can be partitioned into k sets with intersecting convex hulls.
$r_{k}=(d+1)(k-1)+1$ in \mathbb{R}^{d}.

Convexity spaces

A pair (X, C) where X is a ground set and $C \subset 2^{X}$, with

- $\varnothing, X \in C$
- $A \cap B \in C$ for every $A, B \in C$

Convexity spaces

A pair (X, C) where X is a ground set and $C \subset 2^{X}$, with

- $\varnothing, X \in C$
- $A \cap B \in C$ for every $A, B \in C$
- elements of C are called convex sets

Convexity spaces

A pair (X, C) where X is a ground set and $C \subset 2^{X}$, with

- $\varnothing, X \in C$
- $A \cap B \in C$ for every $A, B \in C$
- elements of C are called convex sets
- example: $\left(\mathbb{R}^{d}, C^{d}\right)$ where C^{d} represents the set of convex sets in Euclidean space

Convexity spaces

A pair (X, C) where X is a ground set and $C \subset 2^{X}$, with

- $\varnothing, X \in C$
- $A \cap B \in C$ for every $A, B \in C$
- elements of C are called convex sets
- example: $\left(\mathbb{R}^{d}, C^{d}\right)$ where C^{d} represents the set of convex sets in Euclidean space
- example: $\left(\mathbb{Z}^{d}, L^{d}\right)$ where $L^{d}=\left\{\mathbb{Z}^{d} \cap C \mid C \in C^{d}\right\}$

Convexity spaces

A pair (X, C) where X is a ground set and $C \subset 2^{X}$, with

- $\varnothing, X \in C$
- $A \cap B \in C$ for every $A, B \in C$
- elements of C are called convex sets
- example: $\left(\mathbb{R}^{d}, C^{d}\right)$ where C^{d} represents the set of convex sets in Euclidean space
- example: $\left(\mathbb{Z}^{d}, L^{d}\right)$ where $L^{d}=\left\{\mathbb{Z}^{d} \cap C \mid C \in C^{d}\right\}$
- for $Y \subset X$ convex hull $\operatorname{conv}_{C}(Y)$ is the intersection of all elements of C that contain Y

Convexity spaces

A pair (X, C) where X is a ground set and $C \subset 2^{X}$, with

- $\varnothing, X \in C$
- $A \cap B \in C$ for every $A, B \in C$
- elements of C are called convex sets
- example: $\left(\mathbb{R}^{d}, C^{d}\right)$ where C^{d} represents the set of convex sets in Euclidean space
- example: $\left(\mathbb{Z}^{d}, L^{d}\right)$ where $L^{d}=\left\{\mathbb{Z}^{d} \cap C \mid C \in C^{d}\right\}$
- for $Y \subset X$ convex hull $\operatorname{conv}_{c}(Y)$ is the intersection of all elements of C that contain Y
- a convex set $H \in C$ is a half-space if $X \backslash H \in C$

Convexity spaces

A pair (X, C) where X is a ground set and $C \subset 2^{X}$, with

- $\varnothing, X \in C$
- $A \cap B \in C$ for every $A, B \in C$
- elements of C are called convex sets
- example: $\left(\mathbb{R}^{d}, C^{d}\right)$ where C^{d} represents the set of convex sets in Euclidean space
- example: $\left(\mathbb{Z}^{d}, L^{d}\right)$ where $L^{d}=\left\{\mathbb{Z}^{d} \cap C \mid C \in C^{d}\right\}$
- for $Y \subset X$ convex hull $\operatorname{conv}_{c}(Y)$ is the intersection of all elements of C that contain Y
- a convex set $H \in C$ is a half-space if $X \backslash H \in C$
- space is separable if for every convex set $c \in C$ and $b \in X \backslash c$ there is a half-space H such that $c \subset H$ and $b \notin H$

More examples

- $\left(X, 2^{X}\right)$

More examples

- $\left(X, 2^{X}\right)$
- for $T=(V, E)$, space (V, C) where

$$
C=\{U \subset V \mid \text { subtree on } U \text { is connected }\}
$$

More examples

- $\left(X, 2^{X}\right)$
- for $T=(V, E)$, space (V, C) where

$$
C=\{U \subset V \mid \text { subtree on } U \text { is connected }\}
$$

- for G a group with identity e, the space

$$
(G \backslash\{e\}, H \backslash\{e\}: H \leq G)
$$

More examples

- $\left(X, 2^{X}\right)$
- for $T=(V, E)$, space (V, C) where

$$
C=\{U \subset V \mid \text { subtree on } U \text { is connected }\}
$$

- for G a group with identity e, the space

$$
(G \backslash\{e\}, H \backslash\{e\}: H \leq G)
$$

- more examples with lattices, linear extensions of posets, cylinders...
- examples taken from [Moran-Yehudayoff, On weak ϵ-nets and the Radon number]

More examples

- $\left(X, 2^{X}\right)$
- for $T=(V, E)$, space (V, C) where

$$
C=\{U \subset V \mid \text { subtree on } U \text { is connected }\}
$$

- for G a group with identity e, the space

$$
(G \backslash\{e\}, H \backslash\{e\}: H \leq G)
$$

- more examples with lattices, linear extensions of posets, cylinders...
- examples taken from [Moran-Yehudayoff, On weak ϵ-nets and the Radon number]
- Radon and Tverberg numbers for Convexity spaces?

r and r_{k} for convexity spaces

- for (X, C) : size of smallest subset of X that can be partitioned with interesecting convex hulls (according to C)

r and r_{k} for convexity spaces

- for (X, C) : size of smallest subset of X that can be partitioned with interesecting convex hulls (according to C)
- r may not exist, example $\left(X, 2^{X}\right)$ when $|X| \rightarrow \infty$

r and r_{k} for convexity spaces

- for (X, C) : size of smallest subset of X that can be partitioned with interesecting convex hulls (according to C)
- r may not exist, example $\left(X, 2^{X}\right)$ when $|X| \rightarrow \infty$
- for (V, C) (tree), $r=4$
- for $\left(\mathbb{Z}^{d}, L^{d}\right)$ (lattice convex sets), $2^{d} \leq r=O\left(d 2^{d}\right)$ [Onn, 1991]
- for cylinders on $\{0,1\}^{n}, r=\Theta(\log n)$

r and r_{k} for convexity spaces

- for (X, C) : size of smallest subset of X that can be partitioned with interesecting convex hulls (according to C)
- r may not exist, example $\left(X, 2^{X}\right)$ when $|X| \rightarrow \infty$
- for (V, C) (tree), $r=4$
- for $\left(\mathbb{Z}^{d}, L^{d}\right)$ (lattice convex sets), $2^{d} \leq r=O\left(d 2^{d}\right)$ [Onn, 1991]
- for cylinders on $\{0,1\}^{n}, r=\Theta(\log n)$
- what about r_{k} ?

bounds on r_{k}

- $\left(\mathbb{R}^{d}, C^{d}\right): r=d+2$ and

$$
r_{k}=(d+1)(k-1)+1=(r-1)(k-1)+1
$$

bounds on r_{k}

- $\left(\mathbb{R}^{d}, C^{d}\right): r=d+2$ and

$$
r_{k}=(d+1)(k-1)+1=(r-1)(k-1)+1
$$

- Eckhoff's conjecture: is $r_{k} \leq(r-1)(k-1)+1$ always?

bounds on r_{k}

- $\left(\mathbb{R}^{d}, C^{d}\right): r=d+2$ and $r_{k}=(d+1)(k-1)+1=(r-1)(k-1)+1$
- Eckhoff's conjecture: is $r_{k} \leq(r-1)(k-1)+1$ always?
- [Jamison, 1981] true for $r=3 . r_{k}$ always exists when r exists,

$$
r_{k} \leq r^{\left\lceil\log _{2} k\right\rceil} \leq(2 k)^{\log _{2} r}
$$

using the recursion $r_{k \ell} \leq r_{k} r_{\ell}$

bounds on r_{k}

- $\left(\mathbb{R}^{d}, C^{d}\right): r=d+2$ and $r_{k}=(d+1)(k-1)+1=(r-1)(k-1)+1$
- Eckhoff's conjecture: is $r_{k} \leq(r-1)(k-1)+1$ always?
- [Jamison, 1981] true for $r=3$. r_{k} always exists when r exists,

$$
r_{k} \leq r^{\left[\log _{2} k\right]} \leq(2 k)^{\log _{2} r}
$$

using the recursion $r_{k \ell} \leq r_{k} r_{\ell}$

- [Bukh, 2010] disproved the conjecture for an example with $r=4$ and $r_{k} \geq 3 k-1$

bounds on r_{k}

- $\left(\mathbb{R}^{d}, C^{d}\right): r=d+2$ and $r_{k}=(d+1)(k-1)+1=(r-1)(k-1)+1$
- Eckhoff's conjecture: is $r_{k} \leq(r-1)(k-1)+1$ always?
- [Jamison, 1981] true for $r=3 . r_{k}$ always exists when r exists,

$$
r_{k} \leq r^{\left\lceil\log _{2} k\right\rceil} \leq(2 k)^{\log _{2} r}
$$

using the recursion $r_{k \ell} \leq r_{k} r_{\ell}$

- [Bukh, 2010] disproved the conjecture for an example with $r=4$ and $r_{k} \geq 3 k-1$
- upper bound $r_{k}=O\left(k^{2} \log ^{2} k\right)$, constant depends on r

new results at CG Week

Dömötör Pálvölgyi

- if a convexity space (X, C) has radon number r, then $r_{k} \leq c(r) \cdot k$

new results at CG Week

Dömötör Pálvölgyi

- if a convexity space (X, C) has radon number r, then $r_{k} \leq c(r) \cdot k$
- $\ldots c(r)=r^{r^{\log r}}$

new results at CG Week

Dömötör Pálvölgyi

- if a convexity space (X, C) has radon number r, then $r_{k} \leq c(r) \cdot k$
- $\ldots c(r)=r^{r^{\log r}}$

Zuzana Patáková

- if C is a family of sets in \mathbb{R}^{d} with topological complexity at most b, then $r \leq f(b, d)$

new results at CG Week

Dömötör Pálvölgyi

- if a convexity space (X, C) has radon number r, then

$$
r_{k} \leq c(r) \cdot k
$$

- $\ldots c(r)=r^{r^{\log r}}$

Zuzana Patáková

- if C is a family of sets in \mathbb{R}^{d} with topological complexity at most b, then $r \leq f(b, d)$
- topological complexity depends on the Betti number of the intersections of elements of C
- eg. families of convex sets, good covers, pseudospheres, some families of semi-algebraics sets

Helly's theorem

Given a collection convex sets in \mathbb{R}^{d}, if every $(d+1)$-tuple has a non-empty intersection, then all sets intersect.

Helly's theorem

Given a collection convex sets in \mathbb{R}^{d}, if every $(d+1)$-tuple has a non-empty intersection, then all sets intersect.

- Radon's theorem is used to prove Helly's theorem

Helly's theorem

Given a collection convex sets in \mathbb{R}^{d}, if every $(d+1)$-tuple has a non-empty intersection, then all sets intersect.

- Radon's theorem is used to prove Helly's theorem
- there is also a connection in the setting of convexity spaces

Helly's theorem

Given a collection convex sets in \mathbb{R}^{d}, if every $(d+1)$-tuple has a non-empty intersection, then all sets intersect.

- Radon's theorem is used to prove Helly's theorem
- there is also a connection in the setting of convexity spaces

Fractional Helly Theorem [Holmsen and Lee, 2019]

Let (X, C) be a convexity space with radon number r. For each $\alpha \in(0,1)$ there exists an integer $m(r)$ and $\beta(\alpha, r)$ such that
α-fraction of m-tuples of C intersect $\Longrightarrow \beta$-fraction of elements of C intersect

Helly's theorem

Given a collection convex sets in \mathbb{R}^{d}, if every $(d+1)$-tuple has a non-empty intersection, then all sets intersect.

- Radon's theorem is used to prove Helly's theorem
- there is also a connection in the setting of convexity spaces

Fractional Helly Theorem [Holmsen and Lee, 2019]
Let (X, C) be a convexity space with radon number r. For each $\alpha \in(0,1)$ there exists an integer $m(r)$ and $\beta(\alpha, r)$ such that
α-fraction of m-tuples of C intersect
$\Longrightarrow \beta$-fraction of elements of C intersect

- a colorful Helly theorem is proven in the process

Helly's theorem

Given a collection convex sets in \mathbb{R}^{d}, if every $(d+1)$-tuple has a non-empty intersection, then all sets intersect.

- Radon's theorem is used to prove Helly's theorem
- there is also a connection in the setting of convexity spaces

Fractional Helly Theorem [Holmsen and Lee, 2019]

Let (X, C) be a convexity space with radon number r. For each $\alpha \in(0,1)$ there exists an integer $m(r)$ and $\beta(\alpha, r)$ such that
α-fraction of m-tuples of C intersect
$\Longrightarrow \beta$-fraction of elements of C intersect

- a colorful Helly theorem is proven in the process
$-m(r) \sim r^{r^{\left[\log _{2} r\right]}}$

Helly's theorem

Given a collection convex sets in \mathbb{R}^{d}, if every $(d+1)$-tuple has a non-empty intersection, then all sets intersect.

- Radon's theorem is used to prove Helly's theorem
- there is also a connection in the setting of convexity spaces

Fractional Helly Theorem [Holmsen and Lee, 2019]

Let (X, C) be a convexity space with radon number r. For each $\alpha \in(0,1)$ there exists an integer $m(r)$ and $\beta(\alpha, r)$ such that
α-fraction of m-tuples of C intersect
$\Longrightarrow \beta$-fraction of elements of C intersect

- a colorful Helly theorem is proven in the process
$-m(r) \sim r^{r^{\left[\log _{2} r\right]}}$
- Dömötör's result uses this theorem

Helly's theorem

Given a collection convex sets in \mathbb{R}^{d}, if every $(d+1)$-tuple has a non-empty intersection, then all sets intersect.

- Radon's theorem is used to prove Helly's theorem
- there is also a connection in the setting of convexity spaces

Fractional Helly Theorem [Holmsen and Lee, 2019]

Let (X, C) be a convexity space with radon number r. For each $\alpha \in(0,1)$ there exists an integer $m(r)$ and $\beta(\alpha, r)$ such that
α-fraction of m-tuples of C intersect
$\Longrightarrow \beta$-fraction of elements of C intersect

- a colorful Helly theorem is proven in the process
$-m(r) \sim r^{r^{\left[\log _{2} r\right]}}$
- Dömötör's result uses this theorem
- Zuzana's result together with this gives a new result

proof idea

- for (X, C), let $|X|=t k$; show that if $t \geq c(r)$ then a k-partition exists

proof idea

- for (X, C), let $|X|=t k$; show that if $t \geq c(r)$ then a k-partition exists
- construct F : choose $s \ll t$; F is family of convex sets that are convex hulls of s-element subsets of X

proof idea

- for (X, C), let $|X|=t k$; show that if $t \geq c(r)$ then a k-partition exists
- construct F : choose $s \ll t$; F is family of convex sets that are convex hulls of s-element subsets of X
- Theorem: for a certain $\beta, \beta\binom{t k}{s}$ members of F intersect

proof idea

- for (X, C), let $|X|=t k$; show that if $t \geq c(r)$ then a k-partition exists
- construct F : choose $s \ll t$; F is family of convex sets that are convex hulls of s-element subsets of X
- Theorem: for a certain $\beta, \beta\binom{t k}{s}$ members of F intersect
- consider the hypergraph on vertices of X whose edges are the members of F from above: if there are k (vertex) disjoint edges, the result follows

proof idea

- for (X, C), let $|X|=t k$; show that if $t \geq c(r)$ then a k-partition exists
- construct F : choose $s \ll t$; F is family of convex sets that are convex hulls of s-element subsets of X
- Theorem: for a certain $\beta, \beta\binom{t k}{s}$ members of F intersect
- consider the hypergraph on vertices of X whose edges are the members of F from above: if there are k (vertex) disjoint edges, the result follows
- assume there are at most $k-1$ disjoint edges: this gives an upper bound on the size of the hypergraph ...

proof idea

- for (X, C), let $|X|=t k$; show that if $t \geq c(r)$ then a k-partition exists
- construct F : choose $s \ll t$; F is family of convex sets that are convex hulls of s-element subsets of X
- Theorem: for a certain $\beta, \beta\binom{t k}{s}$ members of F intersect
- consider the hypergraph on vertices of X whose edges are the members of F from above: if there are k (vertex) disjoint edges, the result follows
- assume there are at most $k-1$ disjoint edges: this gives an upper bound on the size of the hypergraph ...
- ...but that is less than $\beta\binom{t k}{s}$, a contradiction (values of s, t matter here)
- To show: β-fraction of the members of F intersect
- To show: β-fraction of the members of F intersect
- pick $m=m(r)$ and α
- To show: β-fraction of the members of F intersect
- pick $m=m(r)$ and α
- consider the collection of m-tuples of F; to show: α-fraction of this collection intersects, so that fractional helly theorem applies and least β-fraction of F intersects
- To show: β-fraction of the members of F intersect
- pick $m=m(r)$ and α
- consider the collection of m-tuples of F; to show: α-fraction of this collection intersects, so that fractional helly theorem applies and least β-fraction of F intersects
- almost all m-tuples are vertex disjoint, restrict attention only to these. Further, group tuples by the ms elements supporting them
- To show: β-fraction of the members of F intersect
- pick $m=m(r)$ and α
- consider the collection of m-tuples of F; to show: α-fraction of this collection intersects, so that fractional helly theorem applies and least β-fraction of F intersects
- almost all m-tuples are vertex disjoint, restrict attention only to these. Further, group tuples by the ms elements supporting them
\checkmark randomly partition $m s$ elements into sets $V_{1}, \ldots, V_{f}\left(f=\frac{s}{r_{m}}\right)$, so that V_{i} contains $m r_{m}$ elements. Consider m-tuples x_{1}, \ldots, x_{m} such that for each i, x_{i} contains exactly r_{m} elements from each of V_{1}, \ldots, V_{f}.
- To show: β-fraction of the members of F intersect
- pick $m=m(r)$ and α
- consider the collection of m-tuples of F; to show: α-fraction of this collection intersects, so that fractional helly theorem applies and least β-fraction of F intersects
- almost all m-tuples are vertex disjoint, restrict attention only to these. Further, group tuples by the $m s$ elements supporting them
- randomly partition $m s$ elements into sets $V_{1}, \ldots, V_{f}\left(f=\frac{s}{r_{m}}\right)$, so that V_{i} contains $m r_{m}$ elements. Consider m-tuples x_{1}, \ldots, x_{m} such that for each i, x_{i} contains exactly r_{m} elements from each of V_{1}, \ldots, V_{f}.
- the first r_{m} ($\leq r^{\log _{2} m}$, trivial radon bound) elements of V_{i} can be partitioned into m sets and distributed to x_{1}, \ldots, x_{m}. The remaining elements of V_{i} are distributed arbitrarily. The m-tuple hence intersects.
- To show: β-fraction of the members of F intersect
- pick $m=m(r)$ and α
- consider the collection of m-tuples of F; to show: α-fraction of this collection intersects, so that fractional helly theorem applies and least β-fraction of F intersects
- almost all m-tuples are vertex disjoint, restrict attention only to these. Further, group tuples by the ms elements supporting them
\checkmark randomly partition $m s$ elements into sets $V_{1}, \ldots, V_{f}\left(f=\frac{s}{r_{m}}\right)$, so that V_{i} contains $m r_{m}$ elements. Consider m-tuples x_{1}, \ldots, x_{m} such that for each i, x_{i} contains exactly r_{m} elements from each of V_{1}, \ldots, V_{f}.
the first r_{m} ($\leq r^{\log _{2} m}$, trivial radon bound) elements of V_{i} can be partitioned into m sets and distributed to x_{1}, \ldots, x_{m}. The remaining elements of V_{i} are distributed arbitrarily. The m-tuple hence intersects.
- choosing the proper values for s, m, t, α makes sure everything works out

open questions

- algorithmic questions
- can $c(r) \leq r^{r^{\log r}}$ be made linear in r ?
- extension to colorful Tverberg?

