David Eppskin '18 FON18 Making change in 2048

Qu assumptions:

- Set A of allowable tile values, $1 \in A$
- Ard 1 is spawned
- a indistruguishable cells
\rightarrow no relation to each other other in any way \rightarrow can contain a value out of A \rightarrow initially empty
Moves:

1. We place 1 into an empty cell.
2. Mega any sets of cells, whose som 's in A.

$$
\Rightarrow A G G(n, A)
$$

somerset of 2048
at each step: The total value increases by one

Eager sequencer: Do each merge at first step possible
\rightarrow all sequences can be made eager
\Rightarrow At step wa do only a single mere, this merge always uses the new 1 urge $(\sqrt{x}|\sqrt{\mid z}| \sqrt{1})$

single - Wile - first - striate $S y$.
Assume some position of $A G G(u, A)$, which is reachable

- We can reorder steps to conshict tole by tile
first tile in $A G G(4, A)$
remaining $A G G(n-1, A)$

Let P_{x} lade a position

$$
\begin{aligned}
& A=1 X \\
& x=7 \\
& Y=6 \\
& 7=3+4 \quad 7=6+1
\end{aligned}
$$

Lima 1 Let $f=\{1, \ldots, y, x, \ldots\}$
P_{x} is reachable in $f G G(G, A) \Leftrightarrow(1) P_{y}$ is reachable in $A G G(U, A)$
(2) A position of value $x-y$ is reachable in $\operatorname{AGG}(u-1,1)$
Proor/L $C=$

\Rightarrow (1) If we reach $P x$, thew we had the total value of φ at sone point \Rightarrow merge
(2) Before we reach P_{x}, we hae e a total value of $x-1$ and one empty Field
we can clecompose $x-1$ into
P_{z}, constructable in $A G_{G}(u, A)$

case 1: $z=y=F i l l$ into empty Field $: x-1-y+1=x-y$ case 2: $z<y \div x-1-z>x-y$

Corollary: We can construct P_{x} in P_{y}
Single (n, A) : in largest x in P_{x} possible in $A G G(G, A)$

$$
\begin{aligned}
\text { Total }(n, A) & =\operatorname{Siugle}(n, A)+\operatorname{Single}(n-1, A)+\ldots \\
& =\sum_{i=1}^{n} \operatorname{Single}(n, A)
\end{aligned}
$$

if the gay in doesn't increase over us we never terminus

$$
\text { T21 } 1-1+1
$$

We can ciluags stol w th the lajeit tole in singh tole first

$$
v_{n}+v_{1} u_{1} \quad v_{i}<u_{j} \quad \text { with } i_{2}
$$

$$
\begin{aligned}
& \operatorname{Single}(O, A)=\text { Total }(0, A)=0 \\
& \text { Single }(1, A)=1 \\
& T_{\text {opal }}(n, A)=\sum
\end{aligned}
$$

Single $\left(n_{1}, A\right)=$ smallest value in A, whine the gap is lager than Total $(n-1, A)$ to the nett value

