David Eppskin '18 FON18 Making Clange in 2048	· · ·	•	· · ·	•	· · ·	· · ·	•	· · ·	•	· · ·	•	•
Our assumptions:		•	• •	•	• •		•	• •	•	• •	•	•
- Set A of allowable Lile values, IEA	· ·	•	· ·	•	• •	• •	•	· ·	•	• •	•	•
- Aud 1 is spawned	• •	•	• •	•	• •	• •	•	• •	•	• •	•	•
- n indistable cells Lo no velation to each after other in any way Co can contain a value out of A Lo initially empty	· · ·	•	· · · · · · · · · · · · · · · · · · ·		• •	· · ·	•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	•	•
Moves: 1. We place 1 into an empty cell 2. Meye any sets of cells, whose sur is in A			· · ·		• •	· · · · · · · · ·	•	· · ·		· · · · · ·	•	•
= A G G(n, A) superset of 2048		•	· · · · · · · · · · · · · · · · · · ·	•	· ·	· · ·	• • •	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	•	•
at each step: The total value increase, by one	· · ·	•	· · ·	•	• •	· · ·		· · ·		· · ·	•	•

Eager sequencey: Do each merge at first step possible -> all sequences can be made eager -> At skep we do only a sigle merge, this merge always uses the new 1 $ause \left(\frac{x}{x} \right) \frac{y}{z} = \frac{1}{2}$ $\left(\begin{array}{cccc} 1 & 1 & 1 \\ 1 & 1$

single - Hle- first - strategy Assume some position of AGG(u, A), which is reachable 8 1 1 4 1 - Ve can rearder steps A to construct tole by Lile 4/12/7/1/9/1 Rust tile in AGG(u, A) venaining AGG(4-1, A) $\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \left[\frac{1}{2} - \frac{1}{2}$ <1 J

Let Px love a position A = 1N $\sum_{n} \frac{1}{2} \times \frac{1}{2} \left[\sum_{n} \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \right]$ X = Z4 = 6 erpty 7 = 3 + 9 7 = 6 + 7Lemma 1. Let &= £ 1, ... Y, X, ... 3 P_{χ} is vertable in $HGG(G, A) = (1) P_{\chi}$ is reactionsle in AGG(G, A)(i) A possibion of value $\chi - \gamma$ is reactable 12 AGG(u-1, A) Prov L

=> (1) If we reach lx, then we had the at some point. => mage	total vale of p
(Z) Before Le vach Px, Le have a fotal one empty liseld We can clecompose x-1 into	x = 1 and
Rz, constructable in AGGU, A x-1: [2] [] [] [] [] [] [] [] [] [] []	the second se
case 1: Z=Y: Fill 1 into empty Geld case 2: Z c Y = X-1-Z > X-Y	X = 1 - y + 1 = X - y
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Cordlery: We can construct Px vin Py Single (M, A): In largest & in Px possible in AGG(4, A) Total (1, A) = Single (1, A) + Single (1-1, A) + ... $= \sum Single(a, A)$ if the gap doesn't increase over 11 we never tominut $\left[\frac{1}{12}\right]_{12}^{2} \left[\frac{1}{12}\right]_{12}^{2} \left[\frac{1}{12}\right]_{12}^{2$

We can ciliques she with the larget file in single tile forst U.G. and U.G. $\mathcal{O}_i \subset \mathcal{O}_j \quad \mu' \mathcal{H} \quad i \geq j$ $\begin{aligned} S_{jagle}(O,A) &= Tobal(O,A) = O\\ S_{jagle}(A,A) &= 1 \end{aligned}$ $Total(u, A) = \sum$ Single (n, A) = smallest value in A , where the gap is larger them Total (n-1, A) to the next value $M = \Lambda + \mu$