
Probabilistic Finite Automaton Emptiness is undecidable,

or: Who is afraid of small probabilities?

Günter Rote

February 11, 2022

Abstract

It is undecidable whether the language recognized by a probabilistic finite au-
tomaton is empty.

This lecture note gives a self-contained proof of this important result, on which
many other undecidability results are based.

1 Probabilistic finite automata (PFA)

We give a formal definition of a probabilistic finite automaton (PFA) later, in Section 7.
Informally, we can think of a PFA in terms of an algorithm that reads an input string
from left to right, having only finite memory. That is, it can manipulate a finite number
of variables with bounded range, just like an ordinary finite automaton. In addition,
a probabilistic finite automaton may make coin flips. The question whether the PFA
arrives in an accepting state and thus accepts a given input word is not a yes/no decision,
but it happens with a certain probability. The language recognized by a PFA is defined
by specifying a probability threshold or cut point λ. The language consists of all words
for which the probability of acceptance exceeds λ.

The PFA Emptiness Problem is the problem of deciding whether this language is
empty.

2 History

The study of probabilistic finite automata was initiated by Michael Rabin in 1963 [10].
The first proof that PFA Emptiness is undecidable is due to Masakazu Nasu and Namio
Honda from 1969 [8, Theorem 3]. It proceeds through a cascade of lemmas that involve
tricky constructions, showing that more and more classes of languages, including cer-
tain types of context-free languages, can be recognized by a PFA, and it uses strong
results from a previous paper of the authors. Eventually, the undecidability of the PFA
Emptiness Problem is derived from Post’s Correspondence Problem (PCP). The proof
is reproduced in the final part of a monograph by Azaria Paz from 1971 [9, Theorem
IIIB.6.17] (but without naming the PCP). This proof is often erroneously attributed to
Paz, although Paz gives appropriate credit to Nasu and Honda [9, Section IIIB.7].

Another proof was sketched by Anne Condon and Richard Lipton in 1989 [3]. It
arose as a side result of their investigation of space-bounded interactive proofs. Condon
and Lipton based their reduction on the undecidability of the Halting Problem for Two-
Counter Machines (2CM), see Section 3 below. The main ideas of this proof go back to
Rūsiņš Freivalds [4], who studied the emptiness problem for probabilistic 2-way finite
automata in 1981 (unaware of Nasu and Honda’s earlier work). In particular, Freivalds

1



PFA Emptiness is Undecidable 2

developed the idea of a competition between two players to recognize the language
{ aibi | i ≥ 0 } (see Section 4 below), and aggregating the results of these competitions
into “macrocompetitions” (see Section 5). A 2-way automaton can move the input head
back and forth over the input, and thus process the input as often as it likes. Freivalds
claimed that the emptiness problem for such automata is undecidable [4, Theorem 4];
he only mentions that the reduction should be from the PCP but gives no details how
to connect “macrocompetitions” with the PCP. I have not been able to come up with
an idea how the proof would proceed. For our case of a 1-way finite automaton, the
repeated scan of the input is not possible; it is replaced by providing an input which
consists of many repetitions of the same string.

In 2000, Blondel and Tsitsiklis [1] complained that “a complete proof that PFA
Emptiness is undecidable cannot be found in its entirety in the published literature”.
Since then, Condon and Lipton’s proof has been published in sufficient detail in other
papers, for example by Madani, Hanks, and Condon [6, Sec. 3.1 and Appendix A] in
2003. Moreover, in the publication list on Anne Condon’s homepage, the entry for the
Condon–Lipton paper [3] from 1989 links to a 22-page manuscript, dated November 29,
20051. According to the metadata, the file was generated on that date by the dvips
program from a file called “journalsub.dvi”. This manuscript also gives the proof in
great detail.

Condon and Lipton’s proof, which is based on Freivalds’ ideas, is conceptually simple
and illuminating, and it can be presented in a self-contained way.

The two proof have different merits: Condon and Lipton’s proof leads to an arbitrar-
ily large gap between accepting and rejecting probabilities, and it allows to bound the
size of the input alphabet to 2. Nasu and Honda’s proof allows to bound the number of
states of the PFA by 12. Moreover, one can even show undecidability of the emptyness
problem for a fixed PFA with 12 states and an input alphabet of size 53, where the only
variable is the starting distribution.

3 2-Counter machines

A counter machine has a finite control, represented by state q from a finite set Q, and
a number of nonnegative counters. Two states are designated as the start state and the
halting state. Such a machine operates as follows. At each step, it checks which counters
are zero, and depending on this and the current state q, it can increment or decrement
its counters, and it enters a new state.

A counter machine with as few as two counters (a 2CM) is as powerful as a Turing
machine. This was first proved by Marvin Minsky [7] in 1961 and is by now textbook
knowledge [5, Theorem 7.9].2 The question whether such a two-counter machine halts if
it is started with both counter values at 0 is undecidable.

Denoting by qi, li, ri the state and the values of the counters after i steps, an accepting
computation of length n can be written as follows:

l0, r0, q0, l1, r1, q2, l2, r2, q3, . . . , ln−1, rn−1, qn

1https://www.cs.ubc.ca/~condon/papers/condon-lipton89.pdf accessed 2022-02-05.
2The usual way to simulate a Turing machine by a 2CM proceeds in several easy steps: (i) A two-

sided infinite tape can be simulated by two push-down stacks. (ii) A push-down stack can be simulated
by two counters, interpreting the stack contents as digits in an appropriate radix; two counters are
necessary to perform multiplication and division by the radix. (iii) Any number of counters can be
simulated by two counters, representing the values a, b, c, d, . . . of the counters as a product 2a3b5c7d . . . of
prime powers. See https://en.wikipedia.org/wiki/Counter_machine#Two-counter_machines_are_

Turing_equivalent_(with_a_caveat), accessed 2022-02-05.

https://www.cs.ubc.ca/~condon/papers/condon-lipton89.pdf
https://en.wikipedia.org/wiki/Counter_machine#Two-counter_machines_are_Turing_equivalent_(with_a_caveat)
https://en.wikipedia.org/wiki/Counter_machine#Two-counter_machines_are_Turing_equivalent_(with_a_caveat)


PFA Emptiness is Undecidable 3

As an input for a finite automaton, we encode it as a string U over the alphabet Q ∪
{0, 1, #} with an end marker #:

U = 0l01r0q00
l11r1q10

l21r2q2 . . . 0
ln1rnqn# (1)

There are some conditions for an accepting computation that a deterministic finite au-
tomaton can easily check: Does the string conform to this format? Do the state transi-
tions follow the rules? Is l0 = r0 = 0? Is the initial and the final state correct? We refer
to these checks as the formal checks.

The only thing that a finite automaton cannot check is the consistency of the coun-
ters, for example, whether li+1 = li (or li + 1, or li − 1, as appropriate).

For this task, we use the probabilistic capacities of the PFA. If there is an accepting
computation U for the counter machine of the form (1), we feed this computation as
input to the PFA again and again. In other words, we input the string Um for a large
enough m. We will set up the PFA in such a way that it will accept this input with
probability at least 0.99. On the other hand, if there is no accepting computation, then
the PFA will reject any input with probability at least 0.99.

4 The Equality Checker

As an auxiliary procedure, we study a PFA that reads words of the form aibj#, and the
goal is to “decide” whether i = j. We call this procedure the Equality Checker. There
are three possible outcomes, “Same”, “Different”, or “Undecided”.

The PFA simulates a competition between two players S and D (“Same” and “Dif-
ferent”, or “Sum” and “Double”). There are four coins of different colors.

• Player D flips the red coin twice for each a and the orange coin twice for each b.

• Player S flips the blue coin and the green coin for each a and each b.

12

D

S

a a a a a a a a a a b bb b b b b bb b b b b bb b b b b bb b #

Figure 1: The coins flipped for the input a10b22#

At the same time, the PFA keeps track of the difference i − j modulo 12. If i 6≡ j
(mod 12), we declare the outcome to be “Different”.

If i ≡ j (mod 12), the outcome of the game is defined as follows. We call a coin lucky
if it always came up heads.

• If D has a lucky coin and S has no lucky coin, declare “Different”.

• If S has a lucky coin and D has no lucky coin, declare “Same”.

• Otherwise, declare “Undecided”.

For large i and j, lucky means extremely lucky. Thus, the first two events are very rare,
and the outcome will almost always be “Undecided”.



PFA Emptiness is Undecidable 4

Lemma 1.

• If i = j, Pr[“Different”] = Pr[“Same”].

• If i 6= j, Pr[“Different”] ≥ 211 · Pr[“Same”].

Figure 2 illustrates the outcome of the Equality Checker.

“Undecided”

“Same”

“Different”

decide

i = j :

tiny

almost always

1
2

1
2

“Undecided”

“Same”

“Different”

decide

i 6= j :

not so tiny

almost always

≤ 1
211

≥ 1− 1
211

Figure 2: The behavior of the Equality Checker, assuming i ≡ j (mod 12)

Proof. The first statement is clear, since the situation between D and S is symmetric.
Assume that i 6= j. If i 6≡ j (mod 12), then Pr[“Different”] = 1.
Otherwise, |i− j| ≥ 12, and the smaller of i and j, say i, is at most i ≤ i+j

2 − 6, and
so the red coin is flipped at most 2i ≤ i+ j − 12 times. Thus,

Pr[D has a lucky coin] ≥ Pr[the red coin was lucky] ≥ 1/2i+j−12 (2)

The blue and the green coin was each flipped i+ j times, and hence

Pr[S has a lucky coin] ≤ Pr[the blue coin was lucky] (3)

+ Pr[the green coin was lucky] ≤ 2/2i+j (4)

The ratio Pr[D lucky]/Pr[S lucky] between (2) and (3) is at least 211. From each of
these probabilities, we have to subtract the (small) probability that both S and D
have a lucky coin, but this tilts the ratio between “Different” and “Same” in D’s favor.
Formally:

Pr[“Different”]

Pr[“Same”]
=
Pr[D lucky]− Pr[D lucky and S lucky]

Pr[S lucky]− Pr[D lucky and S lucky]
≥ Pr[D lucky]

Pr[S lucky]
≥ 211

5 Correctness Test: Checking a computation

Recall that we wish to check a description of a computation of the following form.

U = 0l01r0q00
l11r1q10

l21r2q2 . . . 0
ln1rnqn#

The Equality Checker can be adapted to look at, say, two consecutive zero blocks 0li

and 0li+1 of a computation that represent the values of the counter l and check whether



PFA Emptiness is Undecidable 5

li+1 = li. It can also be adapted to check li+1 = li + 1, or li+1 = li − 1, as appropriate.
The guarantees of Lemma 1 about the outcome remain valid.

We run independent Equality Checkers for each relation between two consecutive
values li and li+1, as well as ri and ri+1, of a computation U . In total, these are 2n
Equality Checkers. In the schematic drawing of Figure 3, the outcomes of the Equality
Checkers are shown as a row of boxes. Typically, most of them will be “Undecided”,
with a few interspersed “Same” and “Different” results (proportionately much fewer than
shown in the first example row). We are interested in the rare cases when all outcomes
are “Same”, or all “Different”.

U UU U UU U U UU U U U U UU U U NULL

INCORRECTD

SS S S SS S S SS S S SS S S SS S S S CORRECT

D DD D D DD D D DD D D DD D D DD D D D

SS

U UD SS

ri+1 6= ri

Figure 3: The Correctness Test for a computation U

The output of these Equality Checkers is aggregated into a Correctness Test as
follows: We report the output “CORRECT” if all Equality Checkers report “Same”,
and we report the output “INCORRECT” if all Equality Checkers report “Different”.
Otherwise, we report “NULL”.

To compute this result, only four independent Equality Checkers have to run simul-
taneously: The current block lengths li and ri have to be compared with the preceding
and the next values. Thus, the computation can be implemented by a PFA. (Looking
more carefully, one sees that actually, only three Equality Checkers are active at the
same time.)

Lemma 2. Suppose that a computation U of the form (1) passes all formal checks.
If U represents an accepting computation,

Pr[“INCORRECT”] = Pr[“CORRECT”].

If U does not represent an accepting computation,

Pr[“INCORRECT”] ≥ 211 · Pr[“CORRECT”].

Proof. The probability for “CORRECT” is the product of the probabilities that each
Equality Checker results in “Same”, and analogously, for “INCORRECT”.

If U represents an accepting computation, then all Equality Checkers are balanced
between “Same” and “Different”, and the result is clear. Otherwise, there is at least one
position (marked by an arrow in Figure 3) where an error occurs, and the probability for
“Different” is at least 211 times larger than for “Same”. In all other Equality Checkers,
the probability is either balances or it gives a further advantage for “Different”. Thus,
the product of the probabilities is at least 211 times larger for “all Different” than for
“all Same”.

6 Processing the whole input

As mentioned, we feed the PFA with sufficiently many copies of an accepting computa-
tion U . Each copy of U is subjected to the Correctness Test.



PFA Emptiness is Undecidable 6

If we take the first definite result (“CORRECT” or “INCORRECT”) as an indication
whether to accept or reject the input, we get an acceptance probability close to 1/2 on
an accepting input. (It is slightly less than 1/2 because of the small chance that the
input runs out before a definite answer.) On the other hand, if there is no accepting
computation, the algorithm will recognize and reject any “fake” input with probability
at least 1− 1/211.

6.1 Boosting the acceptance probability

We can modify the rules to make the acceptance probability larger, at the expense
of the rejection probability. We determine the overall result as follows. As soon as a
Correctness Test yields “CORRECT”, we accept the input. However, we reject the input
only if we receive 10 answers “INCORRECT” before receiving an answer “CORRECT”.
If the end of the input is reached before any of these events happens, we also reject the
input. Of course, we also reject the input immediately if any of the formal checks fail.

Theorem 1. If there is an accepting computation U for 2-CM, then the PFA accepts
the input Um, for sufficiently high m, with probability at least 0.99.

If there is no accepting computation, then the PFA rejects any input with probability
at least 0.99.

Proof. If U is an accepting computation, the distribution between “CORRECT” and
“INCORRECT” is fair. Thus, the probability of receiving 10 outputs “INCORRECT”
before receiving an output “CORRECT” is 1/210 < 0.001. To this we must add the prob-
ability of rejection because the input runs out before receiving an output “CORRECT”,
but this can be made arbitrarily small by increasing m.

If there is no accepting computation, then “INCORRECT” has an advantage over
“CORRECT” by a factor at least 211. Thus, the probability of receiving 10 outputs
“INCORRECT” before receiving an output “CORRECT” is at least(

211

211 + 1

)10

=

(
1− 1

211 + 1

)10

≥ (1− 1
2000)10 ≈ 1− 1

200 = 0.995.

If the 2CM halts, there is an accepting computation U , and since the 2CM is deter-
ministic, U is unique. In this case, the language recognized by the PFA with cutpoint
λ = 1

2 is {Um | m ≥ m0 } for some large m0. Otherwise, the language is empty.
As a consequence, checking whether the language accepted by a PFA is empty is

undecidable.
It is a rewarding exercise to calculate the necessary number m of repetitions. Suppose

that there is an accepting computation U of length n. Then the counter values li and ri
are also bounded by n. The probability of the outcome “Same” in the Equality Checker
is roughly 2−n, and the probability that all 2n Equality Checkers for the computation U
yield “Same”, leading to the answer answer “CORRECT”, is roughly (2−n)2n = 4−n

2
.

We want the probability that none of m experiments gets the answer “CORRECT” to
be ≤ 0.009:

(1− 4−n
2
)m ≤ 0.009

Thus we need m to be roughly of the order 4n
2

+ 5.

6.2 Further boosting the decision probabilities

We can boost the decision probabilities beyond 0.99 to become arbitrarily close to 1 by
running an odd number of copies of the PFA simultaneously and taking a majority vote.



PFA Emptiness is Undecidable 7

Alternatively, the number K of times that one waits for “INCORRECT” before
rejecting the input can be increased beyond K = 10. As a compensation, one has
to increase the modulus Q (in our case, Q = 12) by which i and j are compared in
the Equality Checker. The acceptance probability in case of a valid input increases to
become arbitrarily close to 1 − 1/2K , and the rejection probability for an invalid input
is at least (1− 1/2Q−1)K .

7 Formal statement of the result

Formally, a PFA is given by a sequence of stochastic transition matrices Mσ, one for
each letter σ from the input alphabet Σ. The matrices are n × n matrices if the PFA
has n states. Our PFA can be constructed to have a single accepting state.

If we assume that the starting state is the first state and the accepting state is the
last state, the acceptance probability for an input word is the upper right entry in the
product of the corresponding transition matrices.

Thus the PFA Emptiness Problem with cutpoint λ, whose undecidability we have
shown, can be formally described as follows.

PFA Emptiness. Given a finite set of n×n rational stochastic matricesM,
is there a product M1M2 . . .Mm, with Mi ∈ M for all i = 1, . . . ,m, whose
upper right corner is larger than 1/2:

(M1M2 . . .Mm)1,n > λ ? (5)

The most natural choice is λ = 1
2 , but we have seen that we can choose any cutpoint λ

with 0 < λ < 1, and we can also ask ≥ λ instead of > λ.
Since we have only used fair coin tosses, the denominators of the entries of our

transition matrices are powers of two. Moreover, by padding the input, we can ensure
that the PFA algorithm needs to toss at most one coin per input symbol, and thus the
entries of the matrices can be restricted to 0, 12 , 1. In the algorithm as described, only 12
coin tosses are necessary per input character (four coins per Equality Checker running
at any point in time). Thus we simply add 11 padding symbols * after each 0 and 1 in
the input U that encodes an accepting computation (1). In addition, we can encode the
input U over a binary alphabet, by using a binary code for the original input alphabet
Q ∪ {0, 1, #, *}. This means that the set M can be restricted to only two matrices.

Theorem 2. For any fixed λ with 0 < λ < 1, the PFA Emptiness Problem with cut-
point λ is undecidable, even if M consists only of two transition matrices, all of whose
entries are from the set {0, 12 , 1}.

As we pointed out, for any ε > 0 we can construct the PFA in such a way that it
either accepts some word with probability at least 1−ε, or it accepts no word with prob-
ability larger than ε. This does not mean that there cannot be words whose acceptance
probability is between those ranges, for example close to 1/2. The words Um where m
is “too small” candidates for such words.

Some more general definitions of a PFA allow an arbitrary starting probability dis-
tribution π over the states instead of a fixed starting state. It is also possible to have
several accepting states. In this case, the acceptance probability that should take the
place of (5) is πTM1M2 . . .Mmη, where η ∈ {0, 1}n is the characteristic vector of the
accepting state set.



PFA Emptiness is Undecidable 8

8 The other proof

I found a readable account of Nasu and Honda’s result in the textbook of Volker Claus
[2, Satz 28, p. 157].

8.1 Post’s Correnspondence Problem (PCP)

We are given a list of pairs of strings (v1, w1), (v2, w2), . . . (vk, wk) over the alphabet
{0, 1}. The problem is to decide if there is a nonempty sequence a1a2 . . . am of indices
ai ∈ {1, 2, . . . , k} such that

va1va2 . . . vam = wa1wa2 . . . wam

This is one of the well-known undecidable problems.

8.2 The binary PFA

For a string u ∈ {0, 1}∗, we denote by (u)2 the integer value of u when it is interpreted
as a binary number, and we write |u| for the length of u. Then we define the following
stochastic matrix:

B(u) :=

 1− (u)2
2|u|

(u)2
2|u|

1− (u)2+1

2|u|
(u)2+1

2|u|


Note that the top right entry (u)2

2|u|
of this matrix is the value 0.u when interpreted as

a binary fraction, and we will freely use this notation. A straightforward calculation
confirms the following multiplication law:

B(u)B(v) = B(vu) (6)

Let us look at the first sequence of strings v1, . . . , vk. We construct the PFA with
input alphabet {1, 2, . . . , k}, two states Φ0 and Φ1, and transition matrices are Mi =
B(vi). If we take Φ0 as the starting state and Φ1 as the accepting state, then the
acceptance probability can be found in the upper right corner of the product of the
transition matrices, and it is clear from (6) that the acceptance probability of the string
a = a1a2 . . . am is

φ(a) = 0.vamvam−1 . . . va2va1 . (7)

We can build an analogous PFA for the other sequence of strings w1, . . . , wk, and its
acceptance probability will be

ψ(a) = 0.wamwmn−1 . . . wa2wa1 . (8)

Due to the reversal of the factors in (6), the order in which the words are concatenated
(7) and (8) in the reverse order compared to the usual convention, but this does not
change the solvability of the PCP. Thus the PCP comes down to the question whether
there is a nonempty string a with φ(a) = ψ(a). We have to be careful because trailing
zero don’t change the probabilities (7) and (8). An easy solution is to add a 1 after
every symbol of every word, thus doubling the length of the words. This ensures that
there are no trailing zeros that could be ignored.

The is a construction to build a PFA that recognizes these strings, based of the
formula

1
4(1− φ2) + 1

4(1− ψ2) + 1
2φψ = 1

2 −
1
4(φ− ψ)2. (9)



PFA Emptiness is Undecidable 9

It is straightforward to build a PFA with acceptance probability φ(u)ψ(u), see Figure 4:
This PFA simulates the two PFAs for v1, . . . , vk and for w1, . . . , wk simultanously and
accepts only if both these PFAs accept. This PFA has four states. Similarly, we can
build a PFA with acceptance probability φ(u)2: We simulate two independent copies
of the PFAs for v1, . . . , vk. Again this uses four states. However, one can see that the
states (Φ0,Ψ1) and (Φ1,Ψ0) of Figure 4 become indistinguishable when φ = ψ. Thus,
they can be merged into one state, and we need only three states.

To get acceptance probability 1− φ(u)2, we complement the set of accepting states.
The PFA for 1 − ψ(u)2 follows the same principle. Finally, we mix the three PFAs in
the ratio 1

4 : 1
4 : 1

2 , as shown in Figure 5a.

(Φ0,Ψ0) (Φ0,Ψ1)

(Φ1,Ψ0) (Φ1,Ψ1)

Figure 4: Acceptance probability φψ.

1− φ2

1− ψ2

φψ

start

(a)

1
2

1
4

1
4

1− φ2

1− ψ2

φψ

A

B

start

(b)

1
2

1
4

1
4

1
8

3
8

γ

1− γ

1

Figure 5: (a) Acceptance probability 1
2 −

1
4(φ− ψ)2. (b) 1

4 −
1
8(φ− ψ)2 + ε

The random transitions from the “start” state can be thought of as taking place
before the algorithm starts to read its input symbols. In the actual PFA, these transition
are carried out together with the transition for the first symbol. The introduction of



PFA Emptiness is Undecidable 10

the new start state has also eliminated the empty word, which would otherwise have
satisfied the equation φ(a) = ψ(a).

Proposition 1. Given a finite set of 11×11 stochastic matricesM with rational entries
whose denominator is a power of 2, it is undecidable if there a product M1M2 . . .Mm,
with Mi ∈M for all i = 1, . . . ,m, whose upper right corner is ≥ 1/2.

This is almost a PFA, except that the convention for such an automaton to recognize
a word is strict inequality (> λ). We thus have to raise the probability just a tiny little
bit, without raising any of the values < 1/2 to become bigger than 1/2.

Since all probabilities are rational, this can be done as follows, see Figure 5b. Suppose
that all entries in the transition matrix are multiples of some number γ. (We can set
γ = 4−max{|vi|,|wi|:1≤i≤k}.) The original PFA is carried out with probability 1/2. We
create a new accepting state A that is entered initially with probability 1/8. Whenever
a symbol is read, the PFA stays in that state with probability γ, and otherwise it moves
to some absorbing state B.

The new part contributes ε := 1
8γ
|a| to the acceptance probability of every nonempty

word a. From the old part we have 1
4 −

1
8(φ − ψ)2, and we know that the probability

must be a multiple of 1
4γ
|a|. Thus, if the probability is less than 1/4, it cannot become

greater than 1/4 by adding ε. If it was 1/4 (i.e., if a is a solution to the PCP), it becomes
greater than 1/4.

Proposition 2. It is undecidable whether the language recognized by a PFA with 13
states with cutpoint λ = 1/4 is empty.

This PFA has a fixed starting state. The cutpoint can also adjusted to any value
between 0 and 1, at the expense of adding another state. (For achieving a cutpoint
value between 0 and 1/2, it is sufficient to adjust the initial split probability between
the original PFA of Figure 5a and the states A and B.)

We can save a state by using the Modified Post Correspondence Problem (MPCP).
The MPCP is often used as an intermediate problem when reducing the Halting Problem
for Turing machines to the PCP, see for example [5, Theorem 8.8].

It differs from the PCP as follows: The pair (v1, w1) must be used as the starting
pair, and in cannot be used in any other place. In other words: a1 = 1, and ai > 1 for
i = 2, . . . ,m. The idea is therefore to apply the transition for the first letter ai right
away, and use the resulting distribution on the states as the starting distribution.

There is still a technical discrepancy: In (7) and (8), the first letter of a to be read
will determine the last words to be concatenated. Thus we must reverse all strings vi and
wi and turn the MPCS into a reversed MPCP, where the last pair in the concatenation
is prescribed to be the pair (v1, w1):

The Reversed Modified Post Correspondence Problem.

We are given a list of pairs of strings (v1, w1), (v2, w2), . . . (vk, wk), and the
problem is to decide if there is a (possibly empty) sequence a2 . . . am of indices
ai ∈ {2, . . . , k} such that

vamvam−1 . . . va2v1 = wamwam−1 . . . wa2w1 ?

For this problem, the translation of (7) and (8) applies directly.

Proposition 3. It is undecidable whether the language recognized by a PFA with 12
states, and with a probability distribution over the starting states, with cutpoint λ = 1/4
is empty.



PFA Emptiness is Undecidable 11

Proof. The construction for Proposition 2 gives a set of 13× 13 matrices such that the
index sequence a1a2 . . . am is a solution of the PCP iff

eT1MamMam−1 . . .Ma2Ma1f = 1
4 ,

where e1 is the first unit vector (1, 0, . . . , 0). Since the last letter am and hence the first
matrix Mam is fixed, the product eT1Mam has a fixed value πT , and we can replace it by
this value:

πTMam−1 . . .Ma2Ma1f

This is the expression for the acceptance probility starting from an initial probability
distribution π.

The PFA goes from the start state to the 12 other states and never returns; thus we
can eliminate the start state after the first step, and only use the 12 × 12 submatrices
without the start state.

We can even achieve a stronger result, by using a Universal Turing Machine. A
Universal Turing Machine is a fixed Turing Machine that can simulate any other Turing
Machine. In particular, the Halting Problem for such a machine is undecidable. Given
some input tape, does the machine halt? In the standard translation from the Halting
problem to the MPCP, the transition rules of the TM are translated into pairs (vi, wi).
The input for the TM is translated into the starting word (v1, w1). In our translation
to the PFA emptyness, the starting word (v1, w1) affects only the starting distribution
π, whereas the transition matrices Mi depend only on the rules of the Universal TM,
which are fixed!

Since we want a MPCP with as few pairs as possibly, we slightly modify the con-
struction of the MPCP from the TM. We ensure that the configuration is padded with
sufficiently many blank symbols. This eliminates the need to deal with special cases
when the TM “touches the bounday”.

If the input word for the TM is w, we start with the pair (v1, w1) = (#, #Bq0wB#).
The other pairs are as follows: (s, s) for each s ∈ Γ. The following pair is different from
the standard construction: (#, B#B). We emit an additional blank symbol at both ends
of the configuration in each step.

For each right-moving rule (q, s, q′, s′, R), the pair (qs, s′q′). For each halting rule
(q, s,−), the pair (qs,H). For each left-moving rule (q, s, q′, s′, R) and for each t ∈ Γ,
the pair (tqs, q′ts′).

For each s ∈ Γ, the pairs (Hs,H) and (sH,H), and finally the pair (H##, #). In
total, 3|Γ| + 2 pairs, plus one pair for each right-moving or halting rule, plus |Γ| pairs
for each left-moving rule (q, s, q′, s′, R), plus the starting pair.

Theorem 3. There is a fixed set of 53 12 × 12 rational stochastic matrices M whose
entries are multiples of 2−22, and a fixed 0-1-vector f ∈ {0, 1}12, for which the following
question is undecidable:

Given a probability distribution π ∈ R12 whose entries are rational numbers with
denominators that are powers of 2, is there a product M1M2 . . .Mm, with Mi ∈ M for
all i = 1, . . . ,m, such that

πTM1M2 . . .Mmf >
1
4 ?

In other words, is the language recognized by the PFA with starting distribution π and
cutpoint λ = 1

4 empty?
There is another fixed setM′ of 53 12×12 rational stochastic matrices and a starting

distribution π, all with rational entries whose denominators are powers of 2, for which
the following question is undecidable:



PFA Emptiness is Undecidable 12

Given a vector f ∈ R12 whose entries are rational numbers with denominators that
are powers of 2, is there a product M1M2 . . .Mm, with Mi ∈ M′ for all i = 1, . . . ,m,
such that

πTM1M2 . . .Mmf >
1
4 ?

Proof. The construction gives a set of 13 × 13 matrices such that the index sequence
a1a2 . . . am is a solution of the PCP iff

eT1MamMam−1 . . .Ma2Ma1f = 1
4 ,

and otherwise it is > 1
4 , where e1 is the first unit vector (1, 0, . . . , 0). Since the last

letter am and hence the first matrix Mam is fixed, we can compute πT = eT1Mam and
substitute eT1Mam by πT . The PFA goes from the start state to the 12 other states and
never returns; thus we can eliminate the start state after the first step, and only use the
12× 12 submatrices without the start state.

IN FACT, the last word pair in the PCP is also known!: (H##, #.
In the other case Ma1f = f ′ is fixed, and we replace
There is one technicality that needs to be resolved. γ was supposed to be a common

divisor of the matrix entries, which depend on the maximum lengths |vi| and |wi| of the
input strings. However, the lengths |v1| and |w1| depend on the input tape, and thus
are unbounded. The solution is to carry out the imagined first transition (which is not
encoded into a transition matrix in M, but determines the starting distribution) with
a sufficiently high small value of γ, namely γ = 4−max{|v1|,|w1|}. The other transition at
the state A can be carried out with the value γ that is sufficient for those entries.

state q πq state q πq state q πq
(Φ0,Ψ0)

1
4(1− 0.v1)(1− 0.w1)

(Φ0,Ψ1)
(Φ0,Ψ1)
(Φ1,Ψ1)

1
4 · 0.v1 · 0.w1

Table 1: starting probabilities

With the weak inequality≥ 1
2 instead of > 1

4 , the statement holds for 10×10 matrices.
It would be interesting to look at some UTMs and check how many pairs (vi, wi) are

actually produced by the translation, in order to see how small M can be taken.
The pairs (vi, wi) into which the TM rules are translated are actually quite short: at

most 3 letters long. If the TM has states Q and tape alphabet Γ, the alphabet for the
words vi and wi is Q∪{H}∪Γ∪{#}, where H is a halting state, with an extra separation
symbol #. There are universal Turing machines with 4 states and 6 tape symbols.

Rogozhin’s (4, 6) machine uses only 22 instructions, Rogozhin, Yurii (1996), ”Small
Universal Turing Machines”, Theoretical Computer Science, 168 (2): 215–240, doi:10.1016/S0304-
3975(96)00077-1

maybe go to PCP from TAG directly?
TAG → UTM → MPCP. string-matching → machine → string-matching
states/symbols = (15, 2), (9, 3), (6, 4), (5, 5), (4, 6), (3, 9), and (2, 18)
U15,2 has 15 states and 2 symbols
This means that the alphabet can be coded in 5 bits. (The halting state has to

be added.) The input words have then at most 15 bits, and entries of the transition
matrices are multiples of 1/415. A variable-length code might be more efficient, each
word contains at most one state, but several letters. Using 5-letter codes of the form



PFA Emptiness is Undecidable 13

0**** for the 15 states plus the halting state leaves 3-letter codes 1** for the 4 symbols
Γ ∪ {#}, leading to word lengths bounded by 5 + 3 + 3 = 11.

We only need to take care that the code for # is not all zeros, and then the trailing
zero problem cannot arise.

e.g. (9, 3), 2 bits per symbol 2+4 bits per letter (sometimes less)
UTM(7,4) Section 8, Rogozhin, 7 states and 4 symbols
UTM(10,3) Section 8, Rogozhin, 7 states and 4 symbols
Fundamenta Informaticae 91 (2009) 105–126 105 DOI 10.3233/FI-2009-0008 IOS

Press Four Small Universal Turing Machines Turlough Neary Damien Woods http:

//mural.maynoothuniversity.ie/12416/1/Woods_FourSmall_2009.pdf

(15, 2),
(9, 3), Section 3.2 U9,3. 13 right-moving rules, 1 halting rule, 13 left-moving rules.

|Γ| = 3
9 + 2 + 13× 3 + 14 = 63
(5, 5), Section 3.3 U5,5. 11 right-moving rules, 3 halting rules, 11 left-moving rules.

|Γ| = 5
15 + 2 + 11× 5 + 14 = 86
(6, 4), Section 3.4 U6,4. 13 right-moving rules, 1 halting rule, 10 left-moving rules.

|Γ| = 4
12 + 2 + 10× 4 + 14 = 68
Section 3.5 U15,2. 14 right-moving rules, 1 halting rule, 15 left-moving rules. |Γ| = 2
6 + 2 + 15× 2 + 15 = 53
Section 3.2 U9,3. 13 right-moving rules, 1 halting rule, 13 left-moving rules. |Γ| = 3
9 + 2 + 13× 3 + 14 = 64
Universal Turing Machines for which the Halting Problem is Undecidable.

R It is a rewarding exercise to see how the method of equality testing by the formula
(9) would apply to the Equality Checker problem of Section 4: It is easy to set up a
PFA that accepts aibj# with probability φ = 1/2i, and another that accepts it with
probability ψ = 1/2j . The construction of Figure 5a, translated into the language of
the Equality Checker, runs as follows. The coins are flipped as usual. In the end, when
reading the symbol #, the PFA flips two more coins, and
• With probability 1/4, it accepts if the red coin was unlucky.
• With probability 1/4, it accepts if the orange coin was unlucky.
• With probability 1/2, it accepts if the blue coin was lucky.

The resulting probability of acceptance is 1
4(1 − 1/4i) + 1

4(1 − 1/4j) + 1
2 · 1/2i+j =

1
2 −

1
4(1/2i − 1/2j)2, which reaches its maximum value 1/2 iff i = j.

[ reference ??? This is proved in Minsky’s book (Computation, 1967, p. 255–258),
Marvin Minsky (1967). Computation: Finite and Infinite Machines (1st ed.). Englewood
Cliffs, N. J.: Prentice-Hall, Inc. In particular see chapter 11: Models Similar to Digital
Computers and chapter 14: Very Simple Bases for Computability. In the former chapter
he defines ”Program machines” and in the later chapter he discusses ”Universal Program
machines with Two Registers” and ”...with one register”, etc. ]

References

[1] Vincent D. Blondel and John N. Tsitsiklis. The boundedness of all products of a
pair of matrices is undecidable. Systems & Control Letters, 41(2):135–140, 2000.
doi:10.1016/S0167-6911(00)00049-9.

http://mural.maynoothuniversity.ie/12416/1/Woods_FourSmall_2009.pdf
http://mural.maynoothuniversity.ie/12416/1/Woods_FourSmall_2009.pdf
http://dx.doi.org/10.1016/S0167-6911(00)00049-9


PFA Emptiness is Undecidable 14

[2] Volker Claus. Stochastische Automaten. Teubner Studienskripten. B. G. Teubner,
Stuttgart, 1971.

[3] A. Condon and R. J. Lipton. On the complexity of space bounded interactive proofs.
In Proceedings of the 30th Annual Symposium on Foundations of Computer Science,
SFCS ’89, page 462–467, USA, 1989. IEEE Computer Society. doi:10.1109/SFCS.
1989.63519.

[4] Rūsiņš Freivalds. Probabilistic two-way machines. In Jozef Gruska and Michal
Chytil, editors, Mathematical Foundations of Computer Science 1981 (MFCS),
volume 118 of Lecture Notes in Computer Science, pages 33–45. Springer, 1981.
doi:10.1007/3-540-10856-4_72.

[5] John E. Hopcroft and Jeffrey E. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

[6] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of proba-
bilistic planning and related stochastic optimization problems. Artif. Intell., 147(1–
2):5–34, 2003. doi:10.1016/S0004-3702(02)00378-8.

[7] Marvin L. Minsky. Recursive unsolvability of Post’s problem of ‘tag’ and other
topics in theory of Turing machines. Annals of Mathematics, 74(3):437–455, 1961.
doi:10.2307/1970290.

[8] Masakazu Nasu and Namio Honda. Mappings induced by PGSM-mappings and
some recursively unsolvable problems of finite probabilistic automata. Information
and Control, 15(3):250–273, 1969. doi:10.1016/S0019-9958(69)90449-5.

[9] Azaria Paz. Introduction to Probabilistic Automata. Computer Science and Applied
Mathematics. Academic Press, New York, 1971.

[10] Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245,
1963. doi:10.1016/S0019-9958(63)90290-0.

http://dx.doi.org/10.1109/SFCS.1989.63519
http://dx.doi.org/10.1109/SFCS.1989.63519
http://dx.doi.org/10.1007/3-540-10856-4_72
http://dx.doi.org/10.1016/S0004-3702(02)00378-8
http://dx.doi.org/10.2307/1970290
http://dx.doi.org/10.1016/S0019-9958(69)90449-5
http://dx.doi.org/10.1016/S0019-9958(63)90290-0

	Probabilistic finite automata (PFA)
	History
	2-Counter machines
	The Equality Checker
	Correctness Test: Checking a computation
	Processing the whole input
	Boosting the acceptance probability
	Further boosting the decision probabilities

	Formal statement of the result
	The other proof
	Post's Correnspondence Problem (PCP)
	The binary PFA


